Journal Home > Volume 16 , Issue 4

Nanowires are fantastic nanostructures for designing new functional devices because of their extraordinary properties. However, nanowires usually suffer pronounced size and surface effects with decreasing diameter size. Whether their structure and thermal stability can still fill the requirements of practical applications is a critical issue to be figured out. Herein, Te nanowires with diameters ranging from sub-10 to over 80 nm are used as samples to probe into this issue. In situ heating experiments are performed on these Te nanowires using an aberration-corrected transmission electron microscopy combined with a chip-based heating holder. It is found that Te nanowires suffer sublimation at elevated temperatures rather than melting, showing size-dependent sublimation scenarios. The Te nanowires with diameter smaller than 20 nm sublimate below 205 °C, while the larger ones with diameter around 85 nm require a higher temperature of around 225 °C. During sublimation-induced shape evolution, the interfacial wetting equilibrium and crystal orientations play critical roles, leading to the formation of spherical surfaces or featured facets at the free surfaces. A mean contact angle of 107.5° is determined at the C–Te interface when the crystalline Te nanowires stay in a quasi-liquid equilibrium state. However, once the crystalline feature is overwhelming, e.g., at moderate temperatures, the ( 101¯1), ( 112¯0), and ( 101¯0) facets govern the free surface, despite the wetting condition at the interfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermal stability of Te nanowires and their crystallography-determined surface evolution at elevated temperatures

Show Author's information Lei Shangguan1Yating Ran1Ziyu Lu1Yutian Gao1Lei Shi1,2Longbing He1,2( )Litao Sun1,2
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China

Abstract

Nanowires are fantastic nanostructures for designing new functional devices because of their extraordinary properties. However, nanowires usually suffer pronounced size and surface effects with decreasing diameter size. Whether their structure and thermal stability can still fill the requirements of practical applications is a critical issue to be figured out. Herein, Te nanowires with diameters ranging from sub-10 to over 80 nm are used as samples to probe into this issue. In situ heating experiments are performed on these Te nanowires using an aberration-corrected transmission electron microscopy combined with a chip-based heating holder. It is found that Te nanowires suffer sublimation at elevated temperatures rather than melting, showing size-dependent sublimation scenarios. The Te nanowires with diameter smaller than 20 nm sublimate below 205 °C, while the larger ones with diameter around 85 nm require a higher temperature of around 225 °C. During sublimation-induced shape evolution, the interfacial wetting equilibrium and crystal orientations play critical roles, leading to the formation of spherical surfaces or featured facets at the free surfaces. A mean contact angle of 107.5° is determined at the C–Te interface when the crystalline Te nanowires stay in a quasi-liquid equilibrium state. However, once the crystalline feature is overwhelming, e.g., at moderate temperatures, the ( 101¯1), ( 112¯0), and ( 101¯0) facets govern the free surface, despite the wetting condition at the interfaces.

Keywords: thermal stability, in situ transmission electron microscopy, surface evolution, Te nanowires

References(38)

[1]

He, Z.; Yang, Y.; Liu, J. W.; Yu, S. H. Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev. 2017, 46, 2732–2753.

[2]

Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

[3]

Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212.

[4]

Qiu, G.; Charnas, A.; Niu, C.; Wang, Y. X.; Wu, W. Z.; Ye, P. D. The resurrection of tellurium as an elemental two-dimensional semiconductor. npj 2D Mater. Appl. 2022, 6, 17.

[5]

Li, C.; Zhang, L.; Gong, T.; Cheng, Y. F.; Li, L. Y.; Li, L.; Jia, S. F.; Qi, Y. J.; Wang, J. B.; Gao, Y. H. Study of the growth mechanism of solution-synthesized symmetric tellurium nanoflakes at atomic resolution. Small 2021, 17, 2005801.

[6]

Wang, Y. X.; de Souza Borges Ferreira, R.; Wang, R. X.; Qiu, G.; Li, G. D.; Qin, Y.; Ye, P. D.; Sabbaghi, A.; Wu, W. Z. Data-driven and probabilistic learning of the process–structure–property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics. Nano Energy 2019, 57, 480–491.

[7]

Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

[8]

Shi, W. D.; Yu, J. B.; Wang, H. S.; Zhang, H. J. Hydrothermal synthesis of single-crystalline antimony telluride nanobelts. J. Am. Chem. Soc. 2006, 128, 16490–16491.

[9]

Li, G. H.; Cui, X. Z.; Tan, C. Y.; Lin, N. Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods. RSC Adv. 2014, 4, 954–958.

[10]

Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. 2004, 116, 1434–1438.

[11]

Lu, Q.; Gao, F.; Komarneni, S. Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv. Mater. 2004, 16, 1629–1632.

[12]

Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

[13]

Yang, H. R.; Finefrock, S. W.; Albarracin Caballero, J. D.; Wu, Y. Environmentally benign synthesis of ultrathin metal telluride nanowires. J. Am. Chem. Soc. 2014, 136, 10242–10245.

[14]

Jiang, W.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wu, B. M.; Yang, X.; Lin, T.; Shen, H.; Meng, X. J.; Wu, X. et al. End-bonded contacts of tellurium transistors. ACS Appl. Mater. Interfaces 2021, 13, 7766–7772.

[15]

Churchill, H. O. H.; Salamo, G. J.; Yu, S. Q.; Hironaka, T.; Hu, X.; Stacy, J.; Shih, I. Toward single atom chains with exfoliated tellurium. Nanoscale Res. Lett. 2017, 12, 488.

[16]

Jnawali, G.; Xiang, Y.; Linser, S. M.; Shojaei, I. A.; Wang, R. X.; Qiu, G.; Lian, C.; Wong, B. M.; Wu, W. Z.; Ye, P. D. et al. Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets. Nat. Commun. 2020, 11, 3991.

[17]

Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.

[18]

Wang, C.; Wang, P. Z.; Chen, S. Y.; Wen, W. Q.; Xiong, W. Q.; Liu, Z. Z.; Liu, Y. F.; He, J. Q.; Wang, Y. S. Anisotropic properties of tellurium nanoflakes probed by polarized Raman and transient absorption microscopy: Implications for polarization-sensitive applications. ACS Appl. Nano Mater. 2022, 5, 1767–1774.

[19]

Wang, H. Q.; Mao, Y.; Kislyakov, I. M.; Dong, N. N.; Chen, C. D.; Wang, J. Anisotropic Raman scattering and intense broadband second-harmonic generation in tellurium nanosheets. Opt. Lett. 2021, 46, 1812–1815.

[20]

Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

[21]

Wu, L. M.; Huang, W. C.; Wang, Y. Z.; Zhao, J. L.; Ma, D. T.; Xiang, Y. J.; Li, J. Q.; Ponraj, J. S.; Dhanabalan, S. C.; Zhang, H. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 2019, 29, 1806346.

[22]

Zhang, X.; Jiang, J. Z.; Suleiman, A. A.; Jin, B.; Hu, X. Z.; Zhou, X.; Zhai, T. Y. Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse. Adv. Funct. Mater. 2019, 29, 1906585.

[23]

Dong, L. L.; Li, K.; Wen, D.; Gao, X.; Feng, J.; Zhang, H. J. Engineering gadolinium-integrated tellurium nanorods for theory-oriented photonic hyperthermia in the NIR-II biowindow. Small 2020, 16, 2003508.

[24]

Huang, W.; Huang, Y. Y.; You, Y. Y.; Nie, T. Q.; Chen, T. F. High-yield synthesis of multifunctional tellurium nanorods to achieve simultaneous chemo-photothermal combination cancer therapy. Adv. Funct. Mater. 2017, 27, 1701388.

[25]

Huang, S. Y.; Segovia, M.; Yang, X. L.; Koh, Y. R.; Wang, Y. X.; Ye, P. D.; Wu, W. Z.; Shakouri, A.; Ruan, X. L.; Xu, X. F. Anisotropic thermal conductivity in 2D tellurium. 2D Mater. 2019, 7, 015008.

[26]

Qiu, G.; Huang, S. Y.; Segovia, M.; Venuthurumilli, P. K.; Wang, Y. X.; Wu, W. Z.; Xu, X. F.; Ye, P. D. Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett. 2019, 19, 1955–1962.

[27]

Wu, X. S.; Tao, Q. Q.; Li, D.; Wang, Q. L.; Zhang, X. Y.; Jin, H. L.; Li, J.; Wang, S.; Xu, X. F. Unprecedently low thermal conductivity of unique tellurium nanoribbons. Nano Res. 2021, 14, 4725–4731.

[28]

Wang, Y. X.; Liu, S.; Wu, Z.; Liu, G. L.; Yang, X.; Wei, T. Q.; Wang, Q. J.; Ye, Y.; Li, D. Y.; Zhu, J. Enhanced thermoelectric performance of van der Waals tellurium via vacancy engineering. Mater. Today Phys. 2021, 18, 100379.

[29]

Peng, M.; Xie, R. Z.; Wang, Z.; Wang, P.; Wang, F.; Ge, H. N.; Wang, Y.; Zhong, F.; Wu, P. S.; Ye, J. F. et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 2021, 7, eabf7358.

[30]

Dasika, P.; Samantaray, D.; Murali, K.; Abraham, N.; Watanbe, K.; Taniguchi, T.; Ravishankar, N.; Majumdar, K. Contact-barrier free, high mobility, dual-gated junctionless transistor using tellurium nanowire. Adv. Funct. Mater. 2021, 31, 2006278.

[31]

Zhou, G. Y.; Addou, R.; Wang, Q. X.; Honari, S.; Cormier, C. R.; Cheng, L. X.; Yue, R. Y.; Smyth, C. M.; Laturia, A.; Kim, J. et al. High-mobility helical tellurium field-effect transistors enabled by transfer-free, low-temperature direct growth. Adv. Mater. 2018, 30, 1803109.

[32]

Qin, J. K.; Liao, P. Y.; Si, M. W.; Gao, S. Y.; Qiu, G.; Jian, J.; Wang, Q. X.; Zhang, S. Q.; Huang, S. Y.; Charnas, A. et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron. 2020, 3, 141–147.

[33]

Blackman, M.; Sambles, J. R. Melting of very small particles during evaporation at constant temperature. Nature 1970, 226, 938.

[34]

Lai, S. L.; Guo, J. Y.; Petrova, V.; Ramanath, G.; Allen, L. H. Size-dependent melting properties of small Tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 1996, 77, 99–102.

[35]

Zhang, M.; Efremov, M. Y.; Schiettekatte, F.; Olson, E. A.; Kwan, A. T.; Lai, S. L.; Wisleder, T.; Greene, J. E.; Allen, L. H. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 2000, 62, 10548–10557.

[36]

He, L. B.; Zhang, L.; Tan, X. D.; Tang, L. P.; Xu, T.; Zhou, Y. L.; Ren, Z. Y.; Wang, Y.; Teng, C. Y.; Sun, L. T. et al. Surface energy and surface stability of Ag nanocrystals at elevated temperatures and their dominance in sublimation-induced shape evolution. Small 2017, 13, 1700743.

[37]

Lian, R. X.; Yu, H.; He, L. B.; Zhang, L.; Zhou, Y. L.; Bu, X.; Xu, T. Y.; Sun, L. T. Sublimation of Ag nanocrystals and their wetting behaviors with graphene and carbon nanotubes. Carbon 2016, 101, 368–376.

[38]

Tran, R.; Xu, Z. H.; Radhakrishnan, B.; Winston, D.; Sun, W. H.; Persson, K. A.; Ong, S. P. Surface energies of elemental crystals. Sci. Data 2016, 3, 160080.

File
12274_2022_5190_MOESM1_ESM.pdf (5.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2022
Revised: 27 September 2022
Accepted: 11 October 2022
Published: 31 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52071077 and 11774050), the National Key R&D Program of China (No. 2017YFA0305500), and the Fundamental Research Funds for the Central Universities.

Return