Journal Home > Volume 16 , Issue 2

Carbon quantum dots (CQDs) are receiving increasing attention for their excellent photostability, low toxicity, and tunable fluorescence performance, but it is still challenging to prepare full-spectrum CQDs using only one single set of precursor and solvent. In this study, P and N co-doped carbon dots (N,PR-CQDs) with multi-color-emissive tunable fluorescence from blue to green and orange were synthesized from bio-based chitosan, employing phosphoric acid as solvent and dopant. The introduction of phosphoric acid successfully shortens the manufacturing reaction time, and the heteratomic functional groups of P–O/P=O on surface of carbon dots enrich the surface defect states, promoting n–π* transition, and therefore changing their electron structure/energy level to reduce the band gap, thus facilitating emission at long wavelength. Specifically, increasing phosphoric acid concentration leads to characteristic excitation peaks red shift from 320 to 420 nm with the characteristic emission peaks red shift from 406 to 503 nm. A new emission peak at 610 nm appears, enabling N,PR-CQDs exhibit double emission peaks with fluorescence color from green to yellow to orange. After compositing with carbon nitride (g-C3N4), N,PR-CQDs work as photosensitizer and effectively narrow the energy gap (Eg) of g-C3N4 from 2.75 to 2.40 eV, endowing the photocatalyst higher visible light capture ability and broader light response region. The photocatalytic degradation rate of rhodamine B (RhB) under visible light irradiation reaches up to 98.39% within 60 min using N,P20%-CQDs/g-C3N4 as catalyst, which is 1.4 times that of pure g-C3N4, and it is demonstrated that ·O2− is the major active substance contributing for RhB degradation by de-ethyl and aromatic ring breakage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chitosan-based carbon dots with multi-color-emissive tunable fluorescence and visible light catalytic enhancement properties

Show Author's information Qiong Wu1Shouyun Zhang1Shuang Li1Yan Yan1Shitao Yu1Ruiyang Zhao1Lang Huang2( )
State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

Abstract

Carbon quantum dots (CQDs) are receiving increasing attention for their excellent photostability, low toxicity, and tunable fluorescence performance, but it is still challenging to prepare full-spectrum CQDs using only one single set of precursor and solvent. In this study, P and N co-doped carbon dots (N,PR-CQDs) with multi-color-emissive tunable fluorescence from blue to green and orange were synthesized from bio-based chitosan, employing phosphoric acid as solvent and dopant. The introduction of phosphoric acid successfully shortens the manufacturing reaction time, and the heteratomic functional groups of P–O/P=O on surface of carbon dots enrich the surface defect states, promoting n–π* transition, and therefore changing their electron structure/energy level to reduce the band gap, thus facilitating emission at long wavelength. Specifically, increasing phosphoric acid concentration leads to characteristic excitation peaks red shift from 320 to 420 nm with the characteristic emission peaks red shift from 406 to 503 nm. A new emission peak at 610 nm appears, enabling N,PR-CQDs exhibit double emission peaks with fluorescence color from green to yellow to orange. After compositing with carbon nitride (g-C3N4), N,PR-CQDs work as photosensitizer and effectively narrow the energy gap (Eg) of g-C3N4 from 2.75 to 2.40 eV, endowing the photocatalyst higher visible light capture ability and broader light response region. The photocatalytic degradation rate of rhodamine B (RhB) under visible light irradiation reaches up to 98.39% within 60 min using N,P20%-CQDs/g-C3N4 as catalyst, which is 1.4 times that of pure g-C3N4, and it is demonstrated that ·O2− is the major active substance contributing for RhB degradation by de-ethyl and aromatic ring breakage.

Keywords: chitosan, carbon dots, photosensitizer, multicolor luminescence, visible light catalysis

References(58)

[1]

Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties, and applications. J. Mater. Chem. 2012, 22, 24230–24253.

[2]

Hu, C.; Li, M. Y.; Qiu, J. S.; Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 2019, 48, 2315–2337.

[3]

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

[4]

Zhu, Z. J.; Zhai, Y. L.; Li, Z. H.; Zhu, P. Y.; Mao, S.; Zhu, C. Z.; Du, D.; Belfiore, L. A.; Tang, J. G.; Lin, Y. H. Red carbon dots: Optical property regulations and applications. Mater. Today 2019, 30, 52–79.

[5]

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

[6]

Li, J. R.; Zhao, H. G.; Zhao, X. J.; Gong, X. Red and yellow emissive carbon dots integrated tandem luminescent solar concentrators with significantly improved efficiency. Nanoscale 2021, 13, 9561–9569.

[7]

He, C.; Xu, P.; Zhang, X. H.; Long, W. J. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon 2022, 186, 91–127.

[8]

Hu, S. L.; Chang, Q.; Lin, K.; Yang, J. L. Tailoring surface charge distribution of carbon dots through heteroatoms for enhanced visible-light photocatalytic activity. Carbon 2016, 105, 484–489.

[9]

Wang, J. L.; Li, Q.; Zheng, J. X.; Yang, Y. Z.; Liu, X. G.; Xu, B. S. N. B-codoping induces high-efficiency solid-state fluorescence and dual emission of yellow/orange carbon dots. ACS Sustainable Chem. Eng. 2021, 9, 2236.

[10]

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

[11]

Yang, X. P.; Liu, K. N.; Ma, J. L.; Sun, R. C. Carbon quantum dots anchored on 1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene for efficient selective photo splitting of biomass-derived sugars into lactic acid. Green Chem. 2022, 24, 5894–5903.

[12]

Li, W.; Chen, Z. J.; Yu, H. P.; Li, J.; Liu, S. X. Wood-derived carbon materials and light-emitting materials. Adv. Mater. 2021, 33, 2000596.

[13]

Wu, Q.; Hu, J. Q.; Cao, S. S.; Yu, S. T.; Huang, L. Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performance supercapacitors. Int. J. Biol. Macromol. 2020, 155, 131–141.

[14]

Xu, T.; Liu, K.; Sheng, N.; Zhang, M. H.; Liu, W.; Liu, H. Y.; Dai, L.; Zhang, X. Y.; Si, C. L.; Du, H. S. et al. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater. 2022, 48, 244–262.

[15]

Wang, L.; Wu, Q.; Zhao, B. Z.; Li, Z. L.; Zhang, Y. H.; Huang, L.; Yu, S. T. Multi-functionalized carbon aerogels derived from chitosan. J. Colloid Interface Sci. 2022, 605, 790–802.

[16]

Wu, Q.; Wang, L.; Yan, Y.; Li, S.; Yu, S. T.; Wang, J. G.; Huang, L. Chitosan-derived carbon dots with room-temperature phosphorescence and energy storage enhancement properties. ACS Sustainable Chem. Eng. 2022, 10, 3027–3036.

[17]

Sun, X. C.; Bruckner, C.; Lei, Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale 2015, 7, 17278–17282.

[18]

Li, N. X.; Lei, F.; Xu, D. D.; Li, Y.; Liu, J. L.; Shi, Y. One-step synthesis of N, P co-doped orange carbon quantum dots with novel optical properties for bio-imaging. Opt. Mater. 2021, 111, 110618.

[19]

Zhang, L. N.; Wang, H.; Shen, W. Z.; Qin, Z. F.; Wang, J. G.; Fan, W. B. Controlled synthesis of graphitic carbon nitride and its catalytic properties in knoevenagel condensations. J. Catal. 2016, 344, 293–302.

[20]

Yang, X. P.; Ma, J. L.; Sun, S. F.; Liu, Z. D.; Sun, R. C. K/O co-doping and introduction of cyano groups in polymeric carbon nitride towards efficient simultaneous solar photocatalytic water splitting and biorefineries. Green Chem. 2022, 24, 2104–2113.

[21]

Tang, L.; Wang, J. J.; Jia, C. T.; Lv, G. X.; Xu, G.; Li, W. T.; Wang, L.; Zhang, J. Y.; Wu, M. H. Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots. Appl. Catal. B: Environ. 2017, 205, 587–596.

[22]

Liu, Y. S.; Li, W.; Wu, P.; Ma, C. H.; Wu, X. Y.; Xu, M. C.; Luo, S.; Xu, Z.; Liu, S. X. Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sens. Actuators B Chem. 2019, 281, 34–43.

[23]

Zheng, Y. X.; Arkin, K.; Hao, J. W.; Zhang, S. Y.; Guan, W.; Wang, L. L.; Guo, Y. N.; Shang, Q. K. Multicolor carbon dots prepared by single-factor control of graphitization and surface oxidation for high-quality white light-emitting diodes. Adv. Opt. Mater. 2021, 9, 2100688.

[24]

Wang, B. Y.; Yu, J. K.; Sui, L. Z.; Zhu, S. J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 2021, 8, 2001453.

[25]

Ai, L.; Yang, Y. S.; Wang, B. Y.; Chang, J. B.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci. Bull. 2021, 66, 839–856.

[26]

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

[27]

Li, X. M.; Rui, M. C.; Song, J. Z.; Shen, Z. H.; Zeng, H. B. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929–4947.

[28]

Liu, Y. S.; Yang, H. Y.; Ma, C. H.; Luo, S.; Xu, M. C.; Wu, Z. W.; Li, W.; Liu, S. X. Luminescent transparent wood based on lignin-derived carbon dots as a building material for dual-channel, real-time, and visual detection of formaldehyde gas. ACS Appl. Mater. Interfaces 2020, 12, 36628–36638.

[29]

Tao, Y. F.; Lin, J.; Wang, D. Y.; Wang, Y. H. Na+-functionalized carbon dots with aggregation-induced and enhanced cyan emission. J. Colloid Interface Sci. 2021, 588, 469–475.

[30]

Khan, A.; Goepel, M.; Colmenares, J. C.; Gläser, R. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS Sustainable Chem. Eng. 2020, 8, 4708–4727.

[31]

Valentin, R.; Bonelli, B.; Garrone, E.; Di Renzo, F.; Quignard, F. Accessibility of the functional groups of chitosan aerogel probed by FT-IR-monitored deuteration. Biomacromolecules 2007, 8, 3646–3650.

[32]

Boonsongrit, Y.; Mueller, B. W.; Mitrevej, A. Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. Eur. J. Pharm. Biopharm. 2008, 69, 388–395.

[33]

Liu, H. Y.; Xu, T.; Cai, C. Y.; Liu, K.; Liu, W.; Zhang, M.; Du, H. S.; Si, C. L.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082.

[34]

Shi, B. F.; Su, Y. B.; Zhang, L. L.; Huang, M. J.; Liu, R. J.; Zhao, S. L. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl. Mater. Interfaces 2016, 8, 10717–10725.

[35]

Chai, X. Y.; He, H.; Fan, H. H.; Kang, X. H.; Song, X. P. A hydrothermal-carbonization process for simultaneously production of sugars, graphene quantum dots, and porous carbon from sugarcane bagasse. Bioresour. Technol. 2019, 282, 142–147.

[36]

Zhai, L.; Ren, X. M.; Xu, Q. Carbogenic π-conjugated domains as the origin of afterglow emissions in carbon dot-based organic composite films. Mater. Chem. Front. 2021, 5, 4272–4279.

[37]

Gu, S. Y.; Hsieh, C. T.; Gandomi, Y. A.; Chang, J. K.; Li, J.; Li, J. L.; Zhang, H. A.; Guo, Q.; Lau, K. C.; Pandey, R. Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots. J. Mater. Chem. C 2019, 7, 5468–5476.

[38]

Hu, S. L.; Liu, J.; Yang, J. L.; Wang, Y. Z.; Cao, S. R. Laser synthesis and size tailor of carbon quantum dots. J. Nanopart. Res. 2011, 13, 7247–7252.

[39]

Mikhraliieva, A.; Zaitsev, V.; Xing, Y. T.; Coelho-Júnior, H.; Sommer, R. L. Excitation-independent blue-emitting carbon dots from mesoporous aminosilica nanoreactor for bioanalytical application. ACS Appl. Nano Mater. 2020, 3, 3652–3664.

[40]

Wang, J. L.; Li, Q.; Zheng, J. X.; Yang, Y. Z.; Liu, X. G.; Xu, B. S. N, B-codoping induces high-efficiency solid-state fluorescence and dual emission of yellow/orange carbon dots. ACS Sustainable Chem. Eng. 2021, 9, 2224–2236.

[41]

Li, G.; Wang, F.; Liu, P.; Chen, Z. M.; Lei, P.; Xu, Z. S.; Li, Z. X.; Ding, Y. F.; Zhang, S. M.; Yang, M. S. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere 2018, 197, 526–534.

[42]

de Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.

[43]

Jiao, Y. Y.; Li, Y. K.; Wang, J. S.; He, Z. H.; Li, Z. J. Exfoliation-induced exposure of active sites for g-C3N4/N-doped carbon dots heterojunction to improve hydrogen evolution activity. Mol. Catal. 2020, 497, 111223.

[44]

Liu, K.; Ma, J. L.; Yang, X. P.; Liu, Z. D.; Li, X. Z.; Zhang, J. Q.; Cui, R.; Sun, R. C. Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chem. Eng. J. 2022, 437, 135232.

[45]

Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B: Environ. 2016, 185, 225–232.

[46]

Zhou, Z. X.; Wang, J. H.; Yu, J. C.; Shen, Y. F.; Li, Y.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc. 2015, 137, 2179–2182.

[47]

Liu, W.; Li, Y. Y.; Liu, F. Y.; Jiang, W.; Zhang, D. D.; Liang, J. L. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation. Water Res. 2019, 151, 8–19.

[48]

Zhu, B. L.; Li, X. F.; Wang, Y.; Liu, N.; Tian, Y.; Yang, J. H. Visible-light-driven photocatalytic degradation of RhB by carbon-quantum-dot-modified g-C3N4 on carbon cloth. CrystEngComm 2021, 23, 4782–4790.

[49]

Jin, X. Y.; Wu, Y. L.; Wang, Y. F.; Lin, Z. L.; Liang, D. L.; Zheng, X. S.; Wei, D. D.; Liu, H. J.; Lv, W. Y.; Liu, G. G. Carbon quantum dots-modified reduced ultrathin g-C3N4 with strong photoredox capacity for broad spectrum-driven PPCPs remediation in natural water matrices. Chem. Eng. J. 2021, 420, 129935.

[50]

Ma, W.; Wang, N.; Guo, Y.; Yang, L. Q.; Lv, M. F.; Tang, X.; Li, S. T. Enhanced photoreduction CO2 activity on g-C3N4: By synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights. Chem. Eng. J. 2020, 388, 124288.

[51]

Zhou, Y. J.; Zhang, L. X.; Huang, W. M.; Kong, Q. L.; Fan, X. Q.; Wang, M.; Shi, J. L. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon. 2016, 99, 111–117.

[52]

Ji, S. Y.; Yang, Y. L.; Zhou, Z. W.; Li, X.; Liu, Y. K. Photocatalysis-Fenton of Fe-doped g-C3N4 catalyst and its excellent degradation performance towards RhB. J. Water Process Eng. 2021, 40, 101804.

[53]

Li, M. Y.; Hu, C.; Yu, C.; Wang, S.; Zhang, P.; Qiu, J. S. Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties. Carbon 2015, 91, 291–297.

[54]

Liu, S. W.; Yin, K.; Ren, W. S.; Cheng, B.; Yu, J. G. Tandem photocatalytic oxidation of rhodamine B over surface fluorinated bismuth vanadate crystals. J. Mater. Chem. 2012, 22, 17759–17767.

[55]

Zhang, D.; Li, J.; Wang, Q. G.; Wu, Q. S. High (001) facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity. J. Mater. Chem. A 2013, 1, 8622–8629.

[56]

Zhang, Y. H.; Qin, H. X.; Huang, Y. T.; Zhang, F.; Liu, H. R.; Liu, H. B.; Wang, Z. J.; Li, R. Highly fluorescent nitrogen and boron doped carbon quantum dots for selective and sensitive detection of Fe3+. J. Mater. Chem. B 2021, 9, 4654–4662.

[57]

Yu, H. J.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477.

[58]

Zhang, Z.; Yates, J. T. Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

File
12274_2022_5189_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 August 2022
Revised: 01 October 2022
Accepted: 11 October 2022
Published: 29 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The National Natural Science Foundation of China (Nos. 52203283 and 31700517), the Natural Science Foundation of Shandong Province (Nos. ZR2022MC040 and ZR2021QC117), and the Open Project of State Key Laboratory of Supramolecular Structure and Materials (No. sklssm2022035, Jilin University) financially supported this work.

Return