Journal Home > Volume 16 , Issue 4

Diffuse large B-cell lymphoma (DLBCL) is a prevalent human malignancy, and understanding its biology will help identify problems in refractory patients and customize alternative therapies for them. We found that DLBCL can be stratified into two independent subtypes with different clinical characteristics and outcomes by consensus clustering of expression of ferroptosis regulatory genes, which proves that ferroptosis is effective in treating refractory cases. In this work, we constructed a novel ferroptosis nanocarrier (PBPMn@PEG) by coating Prussian blue nanoparticles with manganese ions and encapsulating them with poly(ethyleneglycol). The low efficiency of the Fenton reaction of Prussian blue nanoparticles can be improved greatly by manganese coating, and can effectively generate hydroxyl radicals, and induce ferroptosis of lymphoma cells (SU-DHL-10 cells) by down-regulating ferroptosis suppressor genes and up-regulating ferroptosis driver genes. It also induces effective cell apoptosis, which is synergistic with ferroptosis for DLBCL therapy. In vivo experiments also prove that PBPMn@PEG achieved a better anti-tumor effect by up-regulating COX2, HO-1/hemeoxygenase-1 (HMOX1), and NADPH oxidase-4 (NOX4), and down-regulating FSP1 and GPX4, with lower biotoxicity. As a novel and potential DLBCL drug carrier, our discovery served as a foundation for the treatment of the refractory DLBCL by inducing ferroptosis for DLBCL treatment in addition to the therapeutic effect of drugs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design of manganese ion coated Prussian blue nanocarrier for the therapy of refractory diffuse large B-cell lymphoma based on a comprehensive analysis of ferroptosis regulators from clinical cases

Show Author's information Yulu Yang1Rui Chen2Ke Li1Pengfei Gao1Yi Gong3( )Weihu Yang1( )Kaiyong Cai1( )
Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
Department of Pathology, Chongqing University Cancer Hospital, Chongqing 400030, China
Department of Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a prevalent human malignancy, and understanding its biology will help identify problems in refractory patients and customize alternative therapies for them. We found that DLBCL can be stratified into two independent subtypes with different clinical characteristics and outcomes by consensus clustering of expression of ferroptosis regulatory genes, which proves that ferroptosis is effective in treating refractory cases. In this work, we constructed a novel ferroptosis nanocarrier (PBPMn@PEG) by coating Prussian blue nanoparticles with manganese ions and encapsulating them with poly(ethyleneglycol). The low efficiency of the Fenton reaction of Prussian blue nanoparticles can be improved greatly by manganese coating, and can effectively generate hydroxyl radicals, and induce ferroptosis of lymphoma cells (SU-DHL-10 cells) by down-regulating ferroptosis suppressor genes and up-regulating ferroptosis driver genes. It also induces effective cell apoptosis, which is synergistic with ferroptosis for DLBCL therapy. In vivo experiments also prove that PBPMn@PEG achieved a better anti-tumor effect by up-regulating COX2, HO-1/hemeoxygenase-1 (HMOX1), and NADPH oxidase-4 (NOX4), and down-regulating FSP1 and GPX4, with lower biotoxicity. As a novel and potential DLBCL drug carrier, our discovery served as a foundation for the treatment of the refractory DLBCL by inducing ferroptosis for DLBCL treatment in addition to the therapeutic effect of drugs.

Keywords: tumor therapy, ferroptosis, Prussian blue nanoparticles, diffuse large B-cell lymphoma (DLBCL), manganese ion

References(50)

[1]

Schmitz, R.; Wright, G. W.; Huang, D. W.; Johnson, C. A.; Phelan, J. D.; Wang, J. Q.; Roulland, S.; Kasbekar, M.; Young, R. M.; Shaffer, A. L. et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N. Engl. J. Med. 2018, 378, 1396–1407.

[2]

Dubois, S.; Jardin, F. Novel molecular classifications of DLBCL. Nat. Rev. Clin. Oncol. 2018, 15, 474–476.

[3]

Miao, Y.; Medeiros, L. J.; Li, Y.; Li, J. Y.; Young, K. H. Genetic alterations and their clinical implications in DLBCL. Nat. Rev. Clin. Oncol. 2019, 16, 634–652.

[4]

Younes, A.; Sehn, L. H.; Johnson, P.; Zinzani, P. L.; Hong, X. N.; Zhu, J.; Samoilova, O.; Suh, C.; Matsumura, I.; Lopez-Hernandez, A. et al. A global, randomized, placebo-controlled, phase 3 study of ibrutinib plus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (RCHOP) in patients with previously untreated non-germinal center B-cell-like (GCB) diffuse large B-cell lymphoma (DLBCL). Blood 2018, 132, 784.

[5]

Maddocks, K.; Christian, B.; Jaglowski, S.; Flynn, J.; Jones, J. A.; Porcu, P.; Wei, L.; Jenkins, C.; Lozanski, G.; Byrd, J. C. et al. A phase 1/1b study of rituximab, bendamustine, and ibrutinib in patients with untreated and relapsed/refractory non-Hodgkin lymphoma. Blood 2015, 125, 242–248.

[6]

Hartert, K. T.; Wenzl, K.; Krull, J. E.; Manske, M.; Sarangi, V.; Asmann, Y.; Larson, M. C.; Maurer, M. J.; Slager, S.; Macon, W. R. et al. Targeting of inflammatory pathways with R2CHOP in high-risk DLBCL. Leukemia 2021, 35, 522–533.

[7]

Mondello, P.; Steiner, N.; Willenbacher, W.; Ferrero, S.; Ghione, P.; Marabese, A.; Pitini, V.; Cuzzocrea, S.; Mian, M. Lenalidomide in relapsed or refractory diffuse large B-cell lymphoma: Is it a valid treatment option? Oncologist 2016, 21, 1107–1112.

[8]

Singer, J.; Irmisch, A.; Ruscheweyh, H. J.; Singer, F.; Toussaint, N. C.; Levesque, M. P.; Stekhoven, D. J.; Beerenwinkel, N. Bioinformatics for precision oncology. Briefings Bioinf. 2019, 20, 778–788.

[9]

Mahmoud, Y. D.; Veigas, F.; Merlo, J.; Balzarini, M.; Rocha, D.; Rabinovich, G. A.; Fernandez, E.; Girotti, M. R. R. Bioinformatic profiling of tumor immunity from patient biopsies to predict survival and response to immunotherapy. J. Clin. Oncol. 2020, 38, e15198.

[10]

Lei, G.; Zhuang, L.; Gan, B. Y. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022, 22, 381–396.

[11]

Schmitt, A.; Xu, W. D.; Bucher, P.; Grimm, M.; Konantz, M.; Horn, H.; Zapukhlyak, M.; Berning, P.; Brändle, M.; Jarboui, M. A. et al. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood 2021, 138, 871–884.

[12]

Rink, J.; Lin, A. Y.; Yang, S.; Behdad, A.; Karmali, R.; Thaxton, C. S.; Gordon, L. I. Bio-inspired functional lipoprotein-like nanoparticles (Flip-NPs) cause cholesterol starvation and ferroptosis in B-cell lymphomas: Studies in cell lines, xenograft models and primary patient samples. Blood 2019, 134 Suppl 1, 2857.

[13]

Hong, Y.; Ren, T.; Wang, X.; Fu, K.; Wang, X.; Zhang, H. APR-246 Reveals a Therapeutic Potential Via Triggering Different Cell Death Mechanisms in Diffuse Large B Cell Lymphoma. Blood 2021, 138, 3521–3522.

[14]

Ubellacker, J. M.; Tasdogan, A.; Ramesh, V.; Shen, B.; Mitchell, E. C.; Martin-Sandoval, M. S.; Gu, Z. M.; McCormick, M. L.; Durham, A. B.; Spitz, D. R. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 2020, 585, 113–118.

[15]

Chen, X.; Li, J. B.; Kang, R.; Klionsky, D. J.; Tang, D. L. Ferroptosis: Machinery and regulation. Autophagy 2021, 17, 2054–2081.

[16]

Zhao, L.; Zhou, X. X.; Xie, F.; Zhang, L.; Yan, H. Y.; Huang, J.; Zhang, C.; Zhou, F. F.; Chen, J.; Zhang, L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 2022, 42, 88–116.

[17]

Conrad, M.; Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 2019, 15, 1137–1147.

[18]

Zheng, J. S.; Conrad, M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020, 32, 920–937.

[19]

Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 2018, 140, 11302–11307.

[20]

Busquets, M. A.; Estelrich, J. Prussian blue nanoparticles: Synthesis, surface modification, and biomedical applications. Drug Discov. Today 2020, 25, 1431–1443.

[21]

Vázquez-González, M.; Torrente-Rodríguez, R. M.; Kozell, A.; Liao, W. C.; Cecconello, A.; Campuzano, S.; Pingarrón, J. M.; Willner, I. Mimicking peroxidase activities with prussian blue nanoparticles and their cyanometalate structural analogues. Nano Lett. 2017, 17, 4958–4963.

[22]

Qin, Z. G.; Li, Y.; Gu, N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv. Healthc. Mater. 2018, 7, 1800347.

[23]

Chen, J. X.; Wang, Q. Q.; Huang, L.; Zhang, H.; Rong, K.; Zhang, H.; Dong, S. J. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res. 2018, 11, 4905–4913.

[24]

Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

[25]

Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J. Metalloproteins and metal sensing. Nature 2009, 460, 823–830.

[26]

Ember, E.; Rothbart, S.; Puchta, R.; Van Eldik, R. Metal ion-catalyzed oxidative degradation of Orange II by H2O2. High catalytic activity of simple manganese salts. New J. Chem. 2009, 33, 34–49.

[27]

Wang, P.; Liang, C.; Zhu, J. W.; Yang, N.; Jiao, A. H.; Wang, W. J.; Song, X. J.; Dong, X. C. Manganese-based nanoplatform as metal ion-enhanced ROS generator for combined chemodynamic/photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 41140–41147.

[28]

Liu, Z. K.; Zhao, Q.; Zuo, Z. X.; Yuan, S. Q.; Yu, K.; Zhang, Q. F.; Zhang, X. L.; Sheng, H.; Ju, H. Q.; Cheng, H. et al. Systematic analysis of the aberrances and functional implications of ferroptosis in cancer. iScience 2020, 23, 101302.

[29]

Tong, C. Y.; Zhong, X. H.; Yang, Y. J.; Liu, X.; Zhong, G. W.; Xiao, C.; Liu, B.; Wang, W.; Yang, X. P. PB@PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials 2020, 243, 119936.

[30]

Yang, Y. L.; Chen, R.; Gong, Y.; Yang, W. H.; Li, K.; Fan, W. Z.; Gou, S. Q.; Gao, P. F.; He, T. T.; Cai, K. Y. Double-drug loading upconversion nanoparticles for monitoring and therapy of a MYC/BCL6-positive double-hit diffuse large B-cell lymphoma. Biomaterials 2022, 287, 121607.

[31]

Zhou, N.; Bao, J. K. FerrDb: A manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database 2020, 2020, baaa021.

[32]

Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Delivery Rev. 2020, 157, 142–160.

[33]

D’Herde, K.; Krysko, D. V. Ferroptosis: Oxidized PEs trigger death. Nat. Chem. Biol. 2017, 13, 4–5.

[34]

Xu, T.; Ma, Y. Y.; Yuan, Q. L.; Hu, H. X.; Hu, X. K.; Qian, Z. Y.; Rolle, J. K.; Gu, Y. Q.; Li, S. W. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 2020, 14, 3414–3425.

[35]

Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

[36]

Li, J.; Cao, F.; Yin, H. L.; Huang, Z. J.; Lin, Z. T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88.

[37]

Liu, H. R.; Forouhar, F.; Seibt, T.; Saneto, R.; Wigby, K.; Friedman, J.; Xia, X.; Shchepinov, M. S.; Ramesh, S. K.; Conrad, M. et al. Characterization of a patient-derived variant of GPX4 for precision therapy. Nat. Chem. Biol. 2022, 18, 91–100.

[38]

Valsenkova, R.; Sultanova, J.; Skripova, V.; Kiyamova, R. G. 61P characterization of EMC2 gene as a potential prognostic marker of tumor diseases. Ann. Oncol. 2021, 32, S1364.

[39]

Stockwell, B. R.; Angeli, J. P. F.; Bayir, H.; Bush, A. I.; Conrad, M.; Dixon, S. J.; Fulda, S.; Gascón, S.; Hatzios, S. K.; Kagan, V. E. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017, 171, 273–285.

[40]

Chen, X.; Kang, R.; Kroemer, G.; Tang, D. L. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296.

[41]

Kais, Z.; Rondinelli, B.; Holmes, A.; O’Leary, C.; Kozono, D.; D’Andrea, A. D.; Ceccaldi, R. FANCD2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair. Cell Rep. 2016, 15, 2488–2499.

[42]

Lu, Y. X.; Yang, Q.; Su, Y. B.; Ji, Y.; Li, G. B.; Yang, X. Z.; Xu, L. Y.; Lu, Z. L.; Dong, J. J.; Wu, Y. et al. MYCN mediates TFRC-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. Cell Death Dis. 2021, 12, 511.

[43]

Zhang, H. L.; Hu, B. X.; Li, Z. L.; Du, T.; Shan, J. L.; Ye, Z. P.; Peng, X. D.; Li, X.; Huang, Y.; Zhu, X. Y. et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat. Cell Biol. 2022, 24, 88–98.

[44]

Chen, C.; Chen, J. M.; Wang, Y.; Liu, Z. G.; Wu, Y. L. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance. J. Biol. Chem. 2021, 296, 100187.

[45]

Fernández-Mendívil, C.; Luengo, E.; Trigo-Alonso, P.; García-Magro, N.; Negredo, P.; López, M. G. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol. 2021, 38, 101789.

[46]

Helfinger, V.; Von Gall, F. F.; Henke, N.; Kunze, M. M.; Schmid, T.; Rezende, F.; Heidler, J.; Wittig, I.; Radeke, H. H.; Marschall, V. et al. Genetic deletion of Nox4 enhances cancerogen-induced formation of solid tumors. Proc. Natl. Acad. Sci. USA 2021, 118, e2020152118.

[47]

Bersuker, K.; Hendricks, J. M.; Li, Z. P.; Magtanong, L.; Ford, B.; Tang, P. H.; Roberts, M. A.; Tong, B. Q.; Maimone, T. J.; Zoncu, R. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019, 575, 688–692.

[48]

Doll, S.; Freitas, F. P.; Shah, R.; Aldrovandi, M.; Da Silva, M. C.; Ingold, I.; Grocin, A. G.; Da Silva, T. N. X.; Panzilius, E.; Scheel, C. H. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019, 575, 693–698.

[49]

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

[50]

Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

File
12274_2022_5186_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2022
Revised: 03 October 2022
Accepted: 10 October 2022
Published: 07 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 32071334, 51825302, and 21734002) and Natural Science Foundation of Chongqing (Nos. cstc2021jcyj-cxttX0002 and cstc2019jscx-msxmX0160).

Return