Journal Home > Volume 16 , Issue 4

High-performance photonic nonvolatile memory which combines data storage and photosensing can achieve low power consumption and ensure computational energy efficiency. Heterostructure has been theoretically and experimentally proved to have synergistic effects between two materials, which can lead to promising electronic and optical properties for advanced optoelectronic devices. Herein, we report the preparation of borophene-ZnO heterostructures and their applications of broadband photonic nonvolatile memory. The memory shows a good switching ratio (5 × 103) and long-term stability (3,600 s), which are superior to those of the pristine borophene or ZnO quantum dots (QDs). It is found that the memory shows a broad light response from ultraviolet (365 nm) to near infrared (850 nm). Besides, the SET voltage will decrease when the device is exposed to light, which can be attributed to the separation of holes and electrons in accelerating the formation of vacancy conductive filament. This work not only provides a promising material for next-generation photoelectric information, but also paves the way for borophene-based memory towards data storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Borophene-ZnO heterostructures: Preparation and application as broadband photonic nonvolatile memory

Show Author's information Runsheng Liu§Chuang Hou§Xinchao LiangZitong WuGuoan Tai( )
The State Key Laboratory of Mechanics and Control of Mechanical Structures and Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

§ Runsheng Liu and Chuang Hou contributed equally to this work.

Abstract

High-performance photonic nonvolatile memory which combines data storage and photosensing can achieve low power consumption and ensure computational energy efficiency. Heterostructure has been theoretically and experimentally proved to have synergistic effects between two materials, which can lead to promising electronic and optical properties for advanced optoelectronic devices. Herein, we report the preparation of borophene-ZnO heterostructures and their applications of broadband photonic nonvolatile memory. The memory shows a good switching ratio (5 × 103) and long-term stability (3,600 s), which are superior to those of the pristine borophene or ZnO quantum dots (QDs). It is found that the memory shows a broad light response from ultraviolet (365 nm) to near infrared (850 nm). Besides, the SET voltage will decrease when the device is exposed to light, which can be attributed to the separation of holes and electrons in accelerating the formation of vacancy conductive filament. This work not only provides a promising material for next-generation photoelectric information, but also paves the way for borophene-based memory towards data storage devices.

Keywords: heterostructure, ZnO, borophene, nonvolatile memory, photoluminescence (PL) quenching, light control

References(60)

[1]

Lv, Z. Y.; Wang, Y.; Chen, J. R.; Wang, J. J.; Zhou, Y.; Han, S. T. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 2020, 120, 3941–4006.

[2]

Zhou, F. C.; Chen, J. W.; Tao, X. M.; Wang, X. R.; Chai, Y. 2D materials based optoelectronic memory: Convergence of electronic memory and optical sensor. Research 2019, 2019, 9490413.

[3]

Zhou, Y.; Han, S. T.; Chen, X.; Wang, F.; Tang, Y. B.; Roy V. A. L. An upconverted photonic nonvolatile memory. Nat. Commun. 2014, 5, 4720.

[4]

Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

[5]

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

[6]

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

[7]

Liu, L. R.; Zhang, Z. H.; Liu, X. L.; Xuan, X. Y.; Yakobson, B. I.; Hersam, M. C.; Guo, W. L. Borophene concentric superlattices via self-assembly of twin boundaries. Nano Lett. 2020, 20, 1315–1321.

[8]

Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

[9]

Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Polyphony in B flat. Nat. Chem. 2016, 8, 525–527.

[10]

Hou, C.; Tai, G. A.; Wu, Z. H.; Hao, J. Q. Borophene: Current status, challenges and opportunities. ChemPlusChem 2020, 85, 2186–2196.

[11]

Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444–450.

[12]

Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A. et al. Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017, 27, 1603300.

[13]
Penev, E. S.; Kutana, A.; Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 2016, 16, 2522–2526.
[14]

Zhao, Y. C.; Zeng, S. M.; Ni, J. Phonon-mediated superconductivity in borophenes. Appl. Phys. Lett. 2016, 108, 242601.

[15]

Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

[16]

Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

[17]

Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286.

[18]

Mazaheri, A.; Javadi, M.; Abdi, Y. Chemical vapor deposition of two-dimensional boron sheets by thermal decomposition of diborane. ACS Appl. Mater. Interfaces 2021, 13, 8844–8850.

[19]

Cuxart, M. G.; Seufert, K.; Chesnyak, V.; Waqas, W. A.; Robert, A.; Bocquet, M. L.; Duesberg, G. S.; Sachdev, H.; Auwärter, W. Borophenes made easy. Sci. Adv. 2021, 7, eabk1490.

[20]

Omambac, K. M.; Petrović, M.; Bampoulis, P.; Brand, C.; Kriegel, M. A.; Dreher, P.; Janoschka, D.; Hagemann, U.; Hartmann, N.; Valerius, P. et al. Segregation-enhanced epitaxy of borophene on Ir(111) by thermal decomposition of borazine. ACS Nano 2021, 15, 7421–7429.

[21]

Wu, Z. H.; Tai, G. A.; Shao, W.; Wang, R.; Hou, C. Experimental realization of quasicubic boron sheets. Nanoscale 2020, 12, 3787–3794.

[22]

Wu, Z. H.; Tai, G. A.; Liu, R. S.; Shao, W.; Hou, C.; Liang, X. C. Synthesis of borophene on quartz towards hydroelectric generators. J. Mater. Chem. A 2022, 10, 8218–8226.

[23]

Wu, Z. H.; Tai, G. A.; Liu, R. S.; Hou, C.; Shao, W.; Liang, X. C.; Wu, Z. T. Van der Waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Appl. Mater. Interfaces 2021, 13, 31808–31815.

[24]

Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819–10825.

[25]

Li, Q. C.; Kolluru, V. S. C.; Rahn, M. S.; Schwenker, E.; Li, S. W.; Hennig, R. G.; Darancet, P.; Chan, M. K. Y.; Hersam, M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148.

[26]

Hou, C.; Tai, G. A.; Liu, Y.; Liu, X. Borophene gas sensor. Nano Res. 2022, 15, 2537–2544.

[27]

Hou, C.; Tai, G.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

[28]

Hou, C.; Tai, G. A.; Liu, Y.; Liu, R. S.; Liang, X. C.; Wu, Z. T.; Wu, Z. H. Borophene pressure sensing for electronic skin and human–machine interface. Nano Energy 2022, 97, 107189.

[29]

Tai, G. A.; Xu, M. P.; Hou, C.; Liu, R. S.; Liang, X. C.; Wu, Z. T. Borophene nanosheets as high-efficiency catalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 60987–60994.

[30]

Tai, G. A.; Liu, B.; Hou, C.; Wu, Z. T.; Liang, X. C. Ultraviolet photodetector based on p-borophene/n-ZnO heterojunction. Nanotechnology 2021, 32, 505606.

[31]

Zhang, Y.; Huang, P.; Guo, J.; Shi, R. C.; Huang, W. C.; Shi, Z.; Wu, L. M.; Zhang, F.; Gao, L. F.; Li, C. et al. Graphdiyne-based flexible photodetectors with high responsivity and detectivity. Adv. Mater. 2020, 32, 2001082.

[32]

Qiao, H.; Huang, Z. Y.; Ren, X. H.; Liu, S. H.; Zhang, Y. P.; Qi, X.; Zhang, H. Self-powered photodetectors based on 2D materials. Adv. Opt. Mater. 2020, 8, 1900765.

[33]

Guo, Z. N.; Cao, R.; Wang, H. D.; Zhang, X.; Meng, F. X.; Chen, X.; Gao, S. Y.; Sang, D. K.; Nguyen, T. H.; Duong, A. T. et al. High-performance polarization-sensitive photodetectors on two-dimensional β-InSe. Natl. Sci. Rev. 2022, 9, nwab098.

[34]

Fan, T. J.; Xie, Z. J.; Huang, W. C.; Li, Z. J.; Zhang, H. Two-dimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology 2019, 30, 114002.

[35]

Gao, L. F.; Ma, C. Y.; Wei, S. R.; Kuklin, A. V.; Zhang, H.; Ågren, H. Applications of few-layer Nb2C MXene: Narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 2021, 15, 954–965.

[36]

Hou, C.; Tai, G. A.; Liu, Y.; Wu, Z. T.; Wu, Z. H.; Liang, X. C. Ultrasensitive humidity sensing and the multifunctional applications of borophene-MoS2 heterostructures. J. Mater. Chem. A 2021, 9, 13100–13108.

[37]

Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S. J.; Williams, S. P. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2010, 22, 3839–3856.

[38]

Behura, S. K.; Nayak, S.; Mukhopadhyay, I.; Jani, O. Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell. Carbon 2014, 67, 766–774.

[39]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy. 2022, 1, e9120010.

[40]

Meng, L. X.; Li, L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy. 2022, 1, e9120020.

[41]

Rogers, D. J.; Teherani, F. H.; Yasan, A.; Minder, K.; Kung, P.; Razeghi, M. Electroluminescence at 375 nm from a ZnO/GaN: Mg/c-Al2O3 heterojunction light emitting diode. Appl. Phys. Lett. 2006, 88, 141918.

[42]

Zhou, X.; Hu, X. Z.; Yu, J.; Liu, S. Y.; Shu, Z. W.; Zhang, Q.; Li, H. Q.; Ma, Y.; Xu, H.; Zhai, T. Y. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv. Funct. Mater. 2018, 28, 1706587.

[43]

Huang, W. Y.; Lv, X. W.; Tan, J. L.; Huang, Q. M.; Cheng, H.; Feng, J.; Li, L. J. Regulable preparation of the oxygen vacancy of ZnO QDs and their fluorescence performance. J. Mol. Struct. 2019, 1195, 653–658.

[44]
Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer: Eden Prairie, 1979.
[45]

Ahmad, R.; Tripathy, N.; Khan, M. Y.; Bhat, K. S.; Ahn, M. S.; Hahn, Y. B. Ammonium ion detection in solution using vertically grown ZnO nanorod based field-effect transistor. RSC Adv. 2016, 6, 54836–54840.

[46]

Wendel, P.; Periyannan, S.; Jaegermann, W.; Klein, A. Polarization dependence of ZnO Schottky barriers revealed by photoelectron spectroscopy. Phys. Rev. Mater. 2020, 4, 084604.

[47]

Li, H. L.; Jing, L.; Liu, W. W.; Lin, J. J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 2018, 12, 1262–1272.

[48]

Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S.; Late, D. J.; Kumar, P.; Vinu, A. Freestanding borophene and its hybrids. Adv. Mater. 2019, 31, 1900353.

[49]

Chen, J. W.; Lo, S. T.; Ho, S. C.; Wong, S. S.; Vu, T. H. Y.; Zhang, X. Q.; Liu, Y. D.; Chiou, Y. Y.; Chen, Y. X.; Yang, J. C. et al. A gate-free monolayer WSe2 pn diode. Nat. Commun. 2018, 9, 3143.

[50]

Zhu, D. L.; Wang, Q.; Han, S.; Cao, P. J.; Liu, W. J.; Jia, F.; Zeng, Y. X.; Ma, X. C.; Lu, Y. M. Optimization of process parameters for the electrical properties in Ga-doped ZnO thin films prepared by r. f. magnetron sputtering. Appl. Surf. Sci. 2014, 298, 208–213.

[51]

Lu, L.; Li, J. P.; Wong, M. A comparative study on the effects of annealing on the characteristics of zinc oxide thin-film transistors with gate-stacks of different gas-permeability. IEEE Electron Device Lett. 2014, 35, 841–843.

[52]

Hong, R. J.; Huang, J. B.; He, H. B.; Fan, Z. X.; Shao, J. D. Influence of different post-treatments on the structure and optical properties of zinc oxide thin films. Appl. Surf. Sci. 2005, 242, 346–352.

[53]

Hu, L.; Yuan, J.; Ren, Y.; Wang, Y.; Yang, J. Q.; Zhou, Y.; Zeng, Y. J.; Han, S. T.; Ruan, S. C. Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv. Mater. 2018, 30, 1801232.

[54]

Wei, C. T.; Xu, J. P.; Shi, S. B.; Bu, Y. C.; Cao, R.; Chen, J.; Xiang, J. J.; Zhang, X. S.; Li, L. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO. J. Colloid Interface Sci. 2020, 577, 279–289.

[55]

Liu, H. F.; Tripathy, S.; Hu, G. X.; Gong, H. Surface optical phonon and A1(LO) in ZnO submicron crystals probed by Raman scattering: Effects of morphology and dielectric coating. J. Appl. Phys. 2009, 105, 053507.

[56]

Ng, H. T.; Chen, B.; Li, J.; Han, J.; Meyyappan, M.; Wu, J.; Li, S. X.; Haller, E. E. Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 2003, 82, 2023–2025.

[57]

Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

[58]

Liu, J. Q.; Zeng, Z. Y.; Cao, X. H.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517–3522.

[59]

Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P. P.; Zhu, C. X.; Kang, E. T.; Noeh, K. G.; Zhang, B.; Zhu, J. H.; Li, Y. X. Conjugated-polymer-functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect. Adv. Mater. 2010, 22, 1731–1735.

[60]

Xiang, D.; Liu, T.; Xu, J. L.; Tan, J. Y.; Hu, Z. H.; Lei, B.; Zheng, Y.; Wu, J.; Neto, A. H. C.; Liu, L. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 2018, 9, 2966.

File
12274_2022_5185_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2022
Revised: 29 September 2022
Accepted: 29 September 2022
Published: 29 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61774085), Natural Science Foundation of Jiangsu Province (No. BK20201300), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (NUAA) (No. MCMS-I-0420G02), the Fundamental Research Funds for the Central Universities (No. NP2022401), the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics) (No. ILA22009), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Funding for Outstanding Doctoral Dissertation in NUAA (No. BCXJ22-02), the Interdisciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics (No. KXKCXJJ202201), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX22_0329).

Return