Journal Home > Volume 16 , Issue 4

Polymer-induced self-assembly of inorganic nanoparticles has emerged as a powerful strategy for fabrication of stimuli-responsive drug delivery nanosystems. Herein, we designed and synthesized a series of lipoic acid-capped polysarcosine-b-polycaprolactone (PSar-b-PCL) block copolymers. The self-assembly of gold nanoparticles drove by these block copolymers was systematically investigated, and the preparation of near-infrared (NIR) light-responsive PSar-decorated gold nanovesicle (PSGV) was optimized. DOX as anticancer drug was efficiently encapsulated within the cavity of PSGV. The PSGV greatly prevented doxorubicin (DOX) from premature leakage. While upon 808 nm laser irradiation, most of loaded DOX was rapidly released, along with the recovery of DOX fluorescence. Impressively, the DOX-loaded PSGV (DOX-PSGV) exhibited much higher cell uptake efficiency when compared to DOX-loaded polyethylene glycol (PEG)-coated gold nanovesicle (DOX-PEGV). Thanks to the synergistic photothermal/chemo therapy, the DOX-PSGV had highly superior antitumor efficacy in established 4T1 tumor model.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-assembly of polysarcosine amphiphilic polymers-tethered gold nanoparticles for precise photo-controlled synergistic therapy

Show Author's information Runkai Lv1Zhengzheng Qian2Xiaopeng Zhao1Fei Xiong1Yingjie Xu2Wenpei Fan2( )Xikuang Yao1( )Wei Huang1,3,4( )
School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

Polymer-induced self-assembly of inorganic nanoparticles has emerged as a powerful strategy for fabrication of stimuli-responsive drug delivery nanosystems. Herein, we designed and synthesized a series of lipoic acid-capped polysarcosine-b-polycaprolactone (PSar-b-PCL) block copolymers. The self-assembly of gold nanoparticles drove by these block copolymers was systematically investigated, and the preparation of near-infrared (NIR) light-responsive PSar-decorated gold nanovesicle (PSGV) was optimized. DOX as anticancer drug was efficiently encapsulated within the cavity of PSGV. The PSGV greatly prevented doxorubicin (DOX) from premature leakage. While upon 808 nm laser irradiation, most of loaded DOX was rapidly released, along with the recovery of DOX fluorescence. Impressively, the DOX-loaded PSGV (DOX-PSGV) exhibited much higher cell uptake efficiency when compared to DOX-loaded polyethylene glycol (PEG)-coated gold nanovesicle (DOX-PEGV). Thanks to the synergistic photothermal/chemo therapy, the DOX-PSGV had highly superior antitumor efficacy in established 4T1 tumor model.

Keywords: tumor therapy, drug delivery system, gold nanovesicles, polymer-induced self-assembly, biodegradable copolymers

References(45)

[1]

Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844–6892.

[2]

Englert, C.; Brendel, J. C.; Majdanski, T. C.; Yildirim, T.; Schubert, S.; Gottschaldt, M.; Windhab, N.; Schubert, U. S. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog. Polym. Sci. 2018, 87, 107–164.

[3]

Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370.

[4]

Bae, Y. H.; Park, K. Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv. Drug Deliv. Rev. 2020, 158, 4–16.

[5]

Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 2017, 64, 1–22.

[6]

Larrañaga, A.; Lomora, M.; Sarasua, J. R.; Palivan, C. G.; Pandit, A. Polymer capsules as micro-/nanoreactors for therapeutic applications: Current strategies to control membrane permeability. Prog. Mater. Sci. 2017, 90, 325–357.

[7]

Li, J. J.; Ge, Z. S.; Toh, K.; Liu, X. Y.; Dirisala, A.; Ke, W. D.; Wen, P. Y.; Zhou, H.; Wang, Z.; Xiao, S. Y. et al. Enzymatically transformable polymersome-based nanotherapeutics to eliminate minimal relapsable cancer. Adv. Mater. 2021, 33, 2105254.

[8]

Cornel, E. J.; Jiang, J. H.; Chen, S.; Du, J. Z. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques. CCS Chem. 2021, 3, 2104–2125.

[9]

Che, H. L.; Cao, S. P.; van Hest, J. C. M. Feedback-induced temporal control of “breathing” polymersomes to create self-adaptive nanoreactors. J. Am. Chem. Soc. 2018, 140, 5356–5359.

[10]

Edlinger, C.; Einfalt, T.; Spulber, M.; Car, A.; Meier, W.; Palivan, C. G. Biomimetic strategy to reversibly trigger functionality of catalytic nanocompartments by the insertion of pH-responsive biovalves. Nano Lett. 2017, 17, 5790–5798.

[11]

Mukerabigwi, J. F.; Yin, W.; Zha, Z. S.; Ke, W. D.; Wang, Y. H.; Chen, W. J.; Japir, A. A. W. M. M.; Wang, Y.; Ge, Z. S. Polymersome nanoreactors with tumor pH-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy. J. Control. Release 2019, 303, 209–222.

[12]

Liu, G. H.; Tan, J. J.; Cen, J.; Zhang, G. Y.; Hu, J. M.; Liu, S. Y. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning. Nat. Commun. 2022, 13, 585.

[13]

Ke, W. D.; Li, J. J.; Mohammed, F.; Wang, Y. H.; Tou, K.; Liu, X. Y.; Wen, P. Y.; Kinoh, H.; Anraku, Y.; Chen, H. B. et al. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy. ACS Nano 2019, 13, 2357–2369.

[14]
Chen, M.; Li, J. W.; Zhang, W. J.; Hong, C. Y.; Pan, C. Y. pH- and reductant-responsive polymeric vesicles with robust membrane-cross-linked structures: In situ cross-linking in polymerization-induced self-assembly. Macromolecules 2019, 52, 1140–1149.
[15]

Yu, N.; Zhang, Y. F.; Li, J. Y.; Gu, W. X.; Yue, S. J.; Li, B.; Meng, F. H.; Sun, H. L.; Haag, R.; Yuan, J. D. et al. Daratumumab immunopolymersome-enabled safe and CD38-targeted chemotherapy and depletion of multiple myeloma. Adv. Mater. 2021, 33, 2007787.

[16]

Hu, X. L.; Zhai, S. D.; Liu, G. H.; Xing, D.; Liang, H. J.; Liu, S. Y. Concurrent drug unplugging and permeabilization of polyprodrug-gated crosslinked vesicles for cancer combination chemotherapy. Adv. Mater. 2018, 30, 1706307.

[17]

Wei, P.; Sun, M.; Yang, B.; Xiao, J. G.; Du, J. Z. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J. Control. Release 2020, 322, 81–94.

[18]

Li, W. P.; Su, C. H.; Chang, Y. C.; Lin, Y. J.; Yeh, C. S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 2016, 10, 2017–2027.

[19]

Matoori, S.; Leroux, J. C. Twenty-five years of polymersomes: Lost in translation? Mater. Horiz. 2020, 7, 1297–1309.

[20]

Poon, W.; Kingston, B. R.; Ouyang, B.; Ngo, W.; Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 2020, 15, 819–829.

[21]

He, H. L.; Liu, L. S.; Morin, E. E.; Liu, M.; Schwendeman, A. Survey of clinical translation of cancer nanomedicines-lessons learned from successes and failures. Acc. Chem. Res. 2019, 52, 2445–2461.

[22]

Yi, C. L.; Yang, Y. Q.; Liu, B.; He, J.; Nie, Z. H. Polymer-guided assembly of inorganic nanoparticles. Chem. Soc. Rev. 2020, 49, 465–508.

[23]

Yi, C. L.; Zhang, S. Y.; Webb, K. T.; Nie, Z. H. Anisotropic self-assembly of hairy inorganic nanoparticles. Acc. Chem. Res. 2017, 50, 12–21.

[24]

Song, J. B.; Lin, L. S.; Yang, Z.; Zhu, R.; Zhou, Z. J.; Li, Z. W.;Wang, F.; Chen, J. Y.; Yang, H. H.; Chen, X. Y. Self-assembled responsive bilayered vesicles with adjustable oxidative stress for enhanced cancer imaging and therapy. J. Am. Chem. Soc. 2019, 141, 8158–8170.

[25]

Song, J. B.; Huang, P.; Chen, X. Y. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes. Nat. Protoc. 2016, 11, 2287–2299.

[26]

Sun, H.; Du, J. Z. Plasmonic vesicles with tailored collective properties. Nanoscale 2018, 10, 17354–17361.

[27]

Yue, L. D.; Yang, K. K.; Wei, J. W.; Xu, M. Z.; Sun, C.; Ding, Y. F.; Yuan, Z.; Wang, S.; Wang, R. B. Supramolecular vesicles based on gold nanorods for precise control of gene therapy and deferred photothermal therapy. CCS Chem. 2022, 4, 1745–1757.

[28]

He, J.; Liu, Y. J.; Babu, T.; Wei, Z. J.; Nie, Z. H. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J. Am. Chem. Soc. 2012, 134, 11342–11345.

[29]

He, J.; Huang, X. L.; Li, Y. C.; Liu, Y. J.; Babu, T.; Aronova, M. A.; Wang, S. J.; Lu, Z. Y.; Chen, X. Y.; Nie, Z. H. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J. Am. Chem. Soc. 2013, 135, 7974–7984.

[30]

Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

[31]

Huang, P.; Lin, J.; Li, W. W.; Rong, P. F.; Wang, Z.; Wang, S. J.; Wang, X. P.; Sun, X. L.; Aronova, M.; Niu, G. et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem., Int. Ed. 2013, 52, 13958–13964.

[32]

Huo, D.; Jiang, X. Q.; Hu, Y. Recent advances in nanostrategies capable of overcoming biological barriers for tumor management. Adv. Mater. 2020, 32, 1904337.

[33]

Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J. Y.; Afonin, K. A.; Dobrovolskaia, M. A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 2022, 180, 114079–114079.

[34]

Hou, Y. Q.; Lu, H. Protein PEPylation: A new paradigm of protein-polymer conjugation. Bioconjugate Chem. 2019, 30, 1604–1616.

[35]

Sun, C. Y.; Shen, S.; Xu, C. F.; Li, H. J.; Liu, Y.; Cao, Z. T.; Yang, X. Z.; Xia, J. X.; Wang, J. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J. Am. Chem. Soc. 2015, 137, 15217–15224.

[36]

Chen, B. M.; Cheng, T. L.; Roffler, S. R. Polyethylene glycol immunogenicity: Theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 2021, 15, 14022–14048.

[37]

Hoang Thi, T. T.; Pilkington, E. H.; Nguyen, D. H.; Lee, J. S.; Park, K. D.; Truong, N. P. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 2020, 12, 298.

[38]

Birke, A.; Ling, J.; Barz, M. Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications. Prog. Polym. Sci. 2018, 81, 163–208.

[39]

Zhu, H.; Chen, Y.; Yan, F. J.; Chen, J.; Tao, X. F.; Ling, J.; Yang, B.; He, Q. J.; Mao, Z. W. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta Biomater. 2017, 50, 534–545.

[40]

Stéen, E. J. L.; Jørgensen, J. T.; Johann, K.; Nørregaard, K.; Sohr, B.; Svatunek, D.; Birke, A.; Shalgunov, V.; Edem, P. E.; Rossin, R. et al. Trans-cyclooctene-functionalized peptobrushes with improved reaction kinetics of the tetrazine ligation for pretargeted nuclear imaging. ACS Nano 2020, 14, 568–584.

[41]

Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic polypeptides: From polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570–6599.

[42]

Mazo, A. R.; Allison-Logan, S.; Karimi, F.; Chan, N. J. A.; Qiu, W. L.; Duan, W.; O'Brien-Simpson, N. M.; Qiao, G. G. Ring opening polymerization of α-amino acids: Advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev. 2020, 49, 4737–4834.

[43]

Alberg, I.; Kramer, S.; Schinnerer, M.; Hu, Q. Z.; Seidl, C.; Leps, C.; Drude, N.; Möckel, D.; Rijcken, C.; Lammers, T. et al. Polymeric nanoparticles with neglectable protein corona. Small 2020, 16, 1907574.

[44]

Hu, Y. L.; Hou, Y. Q.; Wang, H.; Lu, H. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. Bioconjugate Chem. 2018, 29, 2232–2238.

[45]

Liu, Y. J.; Li, Y. C.; He, J.; Duelge, K. J.; Lu, Z. Y.; Nie, Z. H. Entropy-driven pattern formation of hybrid vesicular assemblies made from molecular and nanoparticle amphiphiles. J. Am. Chem. Soc. 2014, 136, 2602–2610.

File
12274_2022_5184_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2022
Revised: 03 October 2022
Accepted: 10 October 2022
Published: 15 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the financial support from the Natural Science Foundation of Jiangsu Province (No. BK20200709), the Natural Science Foundation of the Jiangsu Higher Education Institutes (No. 20KJB430031), and the startup fund from Nanjing Tech University.

Return