Journal Home > Volume 16 , Issue 4

Affibody is a new class of small non-immunoglobulin affinity proteins that possesses high affinity at the picomole level to several tumor overexpressed receptors. Owing to the simple framework, affibody is flexible for modification with payload, but the relatively low molecular weight of this construction simultaneously results in short half-life time which hinders its application in cancer therapy. In this work, we prepared a nanomedicine self-assembled from the conjugate of affibody (ZPDGFRβ:09591, PDGFRβ: platelet-derived growth factor receptor β) with monomethyl auristatin E (MMAE) through cathepsin B cleavable dipeptide linker for targeted colorectal cancer therapy. The nanoscale characteristics of ZPDGFRβ:09591-MMAE affibody-drug conjugate nanomedicine (ZPDGFRβ:09591-M ADCN) resulted in enhanced pharmacokinetics, improved drug accumulation, and promoted biosecurity performance than those of free drugs. As a result, ZPDGFRβ:09591-M ADCN exhibited excellent antitumor efficacy with tumor inhibition rates (TIR) over 99.0% in PDGFRβ-positive tumor models with small solid tumors (~ 150 mm3) or large established tumors (~ 500 mm3), indicating that ZPDGFRβ:09591-MMAE ADCN is promising for the clinic application in colorectal cancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly efficient tumor-targeted nanomedicine assembled from affibody-drug conjugate for colorectal cancer therapy

Show Author's information Xiaoyuan Yang1Xuelin Xia1Wei Huang1Xiaoxia Xia2( )Deyue Yan1( )
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Affibody is a new class of small non-immunoglobulin affinity proteins that possesses high affinity at the picomole level to several tumor overexpressed receptors. Owing to the simple framework, affibody is flexible for modification with payload, but the relatively low molecular weight of this construction simultaneously results in short half-life time which hinders its application in cancer therapy. In this work, we prepared a nanomedicine self-assembled from the conjugate of affibody (ZPDGFRβ:09591, PDGFRβ: platelet-derived growth factor receptor β) with monomethyl auristatin E (MMAE) through cathepsin B cleavable dipeptide linker for targeted colorectal cancer therapy. The nanoscale characteristics of ZPDGFRβ:09591-MMAE affibody-drug conjugate nanomedicine (ZPDGFRβ:09591-M ADCN) resulted in enhanced pharmacokinetics, improved drug accumulation, and promoted biosecurity performance than those of free drugs. As a result, ZPDGFRβ:09591-M ADCN exhibited excellent antitumor efficacy with tumor inhibition rates (TIR) over 99.0% in PDGFRβ-positive tumor models with small solid tumors (~ 150 mm3) or large established tumors (~ 500 mm3), indicating that ZPDGFRβ:09591-MMAE ADCN is promising for the clinic application in colorectal cancer therapy.

Keywords: nanodrug, targeted delivery, olecular self-assembly, ZPDGFRβ:09591 affibody, monomethyl auristatin E (MMAE)

References(39)

[1]

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

[2]

Siegel, R. L.; Miller, K. D.; Goding Sauer, A.; Fedewa, S. A.; Butterly, L. F.; Anderson, J. C.; Cercek, A.; Smith, R. A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164.

[3]

Xi, Y.; Xu, P. F. Global colorectal cancer burden in 2020 and projections to 2040. Trans. Oncol. 2021, 14, 101174.

[4]

Ganesh, K.; Stadler, Z. K.; Cercek, A.; Mendelsohn, R. B.; Shia, J.; Segal, N. H.; Diaz, L. A. Jr. Immunotherapy in colorectal cancer:Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 361–375.

[5]

Cassidy, J.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T. S.; Rivera, F. et al. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 2006–2012.

[6]

Douillard, J. Y.; Cunningham, D.; Roth, A. D.; Navarro, M.; James, R. D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M. et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: A multicentre randomised trial. Lancet 2000, 355, 1041–1047.

[7]

Liu, X. S.; Jiang, J. H.; Chan, R.; Ji, Y.; Lu, J. Q.; Liao, Y. P.; Okene, M.; Lin, J. S.; Lin, P.; Chang, C. H. et al. Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer. ACS Nano 2019, 13, 38–53.

[8]

Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H. J.; Tveit, K. M.; Gibson, F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer 2015, 14, 1–10.

[9]

Chen, L. J.; She, X. D.; Wang, T.; He, L.; Shigdar, S.; Duan, W.; Kong, L. X. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles. Nanoscale 2015, 7, 14080–14092.

[10]

Matos, A. I.; Carreira, B.; Peres, C.; Moura, L. I. F.; Conniot, J.; Fourniols, T.; Scomparin, A.; Martínez-Barriocanal, Á.; Arango, D.; Conde, J. P. et al. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J. Control. Release 2019, 307, 108–138.

[11]

Kirkpatrick, P.; Graham, J.; Muhsin, M. Cetuximab. Nat. Rev. Drug Discov. 2004, 3, 549–550.

[12]

Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I. H.; Segal, N.; Shcherba, M.; Sugarman, R. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 2022, 386, 2363–2376.

[13]

Li, M.; Gao, Y.; Yuan, Y. Y.; Wu, Y. Z.; Song, Z. F.; Tang, B. Z.; Liu, B.; Zheng, Q. C. One-step formulation of targeted aggregation-induced emission dots for image-guided photodynamic therapy of cholangiocarcinoma. ACS Nano 2017, 11, 3922–3932.

[14]

Liu, T. R.; Ma, W. J.; Xu, H. N.; Huang, M. G.; Zhang, D.; He, Z. Q.; Zhang, L.; Brem, S.; O'Rourke, D. M.; Gong, Y. Q. et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat. Commun. 2018, 9, 3439.

[15]

Sofias, A. M.; Toner, Y. C.; Meerwaldt, A. E.; van Leent, M. M. T.; Soultanidis, G.; Elschot, M.; Gonai, H.; Grendstad, K.; Flobak, Å.; Neckmann, U. et al. Tumor targeting by αvβ3-integrin-specific lipid nanoparticles occurs via phagocyte hitchhiking. ACS Nano 2020, 14, 7832–7846.

[16]

Kuhnert, F.; Tam, B. Y. Y.; Sennino, B.; Gray, J. T.; Yuan, J.; Jocson, A.; Nayak, N. R.; Mulligan, R. C.; McDonald, D. M.; Kuo, C. J. Soluble receptor-mediated selective inhibition of VEGFR and PDGFRβ signaling during physiologic and tumor angiogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 10185–10190.

[17]

Brown, R. V.; Wang, T.; Chappeta, V. R.; Wu, G. H.; Onel, B.; Chawla, R.; Quijada, H.; Camp, S. M.; Chiang, E. T.; Lassiter, Q. R. et al. The consequences of overlapping G-quadruplexes and i-motifs in the platelet-derived growth factor receptor β core promoter nuclease hypersensitive element can explain the unexpected effects of mutations and provide opportunities for selective targeting of both structures by small molecules to downregulate gene expression. J. Am. Chem. Soc. 2017, 139, 7456–7475.

[18]

Fan, Q.; Tao, Z.; Yang, H.; Shi, Q. X.; Wang, H.; Jia, D. L.; Wan, L.; Zhang, J.; Cheng, J. Q.; Lu, X. F. Modulation of pericytes by a fusion protein comprising of a PDGFRβ-antagonistic affibody and TNFα induces tumor vessel normalization and improves chemotherapy. J. Control. Release 2019, 302, 63–78.

[19]

Lindborg, M.; Cortez, E.; Höidén-Guthenberg, I.; Gunneriusson, E.; von Hage, E.; Syud, F.; Morrison, M.; Abrahmsén, L.; Herne, N.; Pietras, K. et al. Engineered high-affinity affibody molecules targeting platelet-derived growth factor receptor β in vivo. J. Mol. Biol. 2011, 407, 298–315.

[20]

Paulsson, J.; Sjöblom, T.; Micke, P.; Pontén, F.; Landberg, G.; Heldin, C. H.; Bergh, J.; Brennan, D. J.; Jirström, K.; Östman, A. Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer. Am. J. Pathol. 2009, 175, 334–341.

[21]

Monaco, I.; Camorani, S.; Colecchia, D.; Locatelli, E.; Calandro, P.; Oudin, A.; Niclou, S.; Arra, C.; Chiariello, M.; Cerchia, L. et al. Aptamer functionalization of nanosystems for glioblastoma targeting through the blood-brain barrier. J. Med. Chem. 2017, 60, 4510–4516.

[22]

Wang, F.; Zhou, Y. H.; Cheng, S.; Lou, J. H.; Zhang, X.; He, Q. G.; Huang, N.; Cheng, Y. Gint4.T-modified DNA tetrahedrons loaded with doxorubicin inhibits glioma cell proliferation by targeting PDGFRβ. Nanoscale Res. Lett. 2020, 15, 150.

[23]

Camorani, S.; Hill, B. S.; Collina, F.; Gargiulo, S.; Napolitano, M.; Cantile, M.; Di Bonito, M.; Botti, G.; Fedele, M.; Zannetti, A. et al. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics 2018, 8, 5178–5199.

[24]

Prakash, J.; de Jong, E.; Post, E.; Gouw, A. S. H.; Beljaars, L.; Poelstra, K. A novel approach to deliver anticancer drugs to key cell types in tumors using a PDGF receptor-binding cyclic peptide containing carrier. J. Control. Release 2010, 145, 91–101.

[25]

Tao, Z.; Yang, H.; Shi, Q. X.; Fan, Q.; Wan, L.; Lu, X. F. Targeted delivery to tumor-associated pericytes via an affibody with high affinity for PDGFRβ enhances the in vivo antitumor effects of human TRAIL. Theranostics 2017, 7, 2261–2276.

[26]

Löfblom, J.; Feldwisch, J.; Tolmachev, V.; Carlsson, J.; Ståhl, S.; Frejd, F. Y. Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 2010, 584, 2670–2680.

[27]

Brasino, M.; Roy, S.; Erbse, A. H.; He, L. C.; Mao, C. C.; Park, W.; Cha, J. N.; Goodwin, A. P. Anti-EGFR affibodies with site-specific photo-cross-linker incorporation show both directed target-specific photoconjugation and increased retention in tumors. J. Am. Chem. Soc. 2018, 140, 11820–11828.

[28]

Ståhl, S.; Gräslund, T.; Karlström, A. E.; Frejd, F. Y.; Nygren, P. Å.; Löfblom, J. Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 2017, 35, 691–712.

[29]

Altai, M.; Liu, H.; Ding, H. Z.; Mitran, B.; Edqvist, P. H.; Tolmachev, V.; Orlova, A.; Gräslund, T. Affibody-derived drug conjugates: Potent cytotoxic molecules for treatment of HER2 over-expressing tumors. J. Control. Release 2018, 288, 84–95.

[30]

Strand, J.; Varasteh, Z.; Eriksson, O.; Abrahmsen, L.; Orlova, A.; Tolmachev, V. Gallium-68-labeled affibody molecule for PET imaging of PDGFRβ expression in vivo. Mol. Pharm. 2014, 11, 3957–3964.

[31]

Tolmachev, V.; Varasteh, Z.; Honarvar, H.; Hosseinimehr, S. J.; Eriksson, O.; Jonasson, P.; Frejd, F. Y.; Abrahmsen, L.; Orlova, A. Imaging of platelet-derived growth factor receptor β expression in glioblastoma xenografts using affibody molecule 111In-DOTA-Z09591. J. Nucl. Med. 2014, 55, 294–300.

[32]

Shi, Q. X.; Tao, Z.; Yang, H.; Fan, Q.; Wei, D. F.; Wan, L.; Lu, X. F. PDGFRβ-specific affibody-directed delivery of a photosensitizer, IR700, is efficient for vascular-targeted photodynamic therapy of colorectal cancer. Drug Deliv. 2017, 24, 1818–1830.

[33]

Xia, X. L.; Yang, X. Y.; Huang, W.; Xia, X. X.; Yan, D. Y. Self-assembled nanomicelles of affibody-drug conjugate with excellent therapeutic property to cure ovary and breast cancers. Nanomicro Lett. 2022, 14, 33.

[34]

Qian, Z. G.; Zhou, M. L.; Song, W. W.; Xia, X. X. Dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. Biomacromolecules 2015, 16, 3704–7311.

[35]

Eigenbrot, C.; Ultsch, M.; Dubnovitsky, A.; Abrahmsén, L.; Härd, T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Natl. Acad. Sci. USA 2010, 107, 15039–15044.

[36]

Tao, Z.; Liu, Y. H.; Yang, H.; Feng, Y. R.; Li, H.; Shi, Q. X.; Li, S. F.; Cheng, J. Q.; Lu, X. F. Customizing a tridomain TRAIL variant to achieve active tumor homing and endogenous albumin-controlled release of the molecular machine in vivo. Biomacromolecules 2020, 21, 4017–4029.

[37]

Jin, H.; Zhu, T.; Huang, X. G.; Sun, M.; Li, H. G.; Zhu, X. Y.; Liu, M. L.; Xie, Y. B.; Huang, W.; Yan, D. Y. ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: Light-triggered size-reducing and enhanced tumor penetration. Biomaterials 2019, 211, 68–80.

[38]

Nie, L. M.; Wang, S. J.; Wang, X. Y.; Rong, P. F.; Ma, Y.; Liu, G.; Huang, P.; Lu, G. M.; Chen, X. Y. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 2014, 10, 1585–1593.

[39]

Leon, S. P.; Folkerth, R. D.; Black, P. M. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996, 77, 362–372.

File
12274_2022_5183_MOESM1_ESM.pdf (877.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2022
Revised: 08 October 2022
Accepted: 10 October 2022
Published: 31 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work is supported by the National Key Research and Development Plan of China (No. 2020YFA0907702) and the National Facility for Translational Medicine (Shanghai) (No. TMST-2020-001).

Return