Journal Home > Volume 16 , Issue 4

The trace amount of CO in H2-rich gas poisons Pt electrode when it is adopted as feedstock for proton-exchange-membrane fuel cells. Preferential oxidation of CO (PROX) is a promising approach to selectively oxidize the trace amount of CO while keeping H2 unoxidized. Catalyst plays important roles in PROX. To date, enormous catalysts have been developed for PROX. Summarizing the catalysts developed for PROX and unveiling the reaction mechanism could definitely advance this research field. Herein, in this review, according to the nature of the active sites on the catalysts, we classify the catalysts into group VIII metal-based catalyst, group IB metal-based catalysts, group VIII-group IB bimetallic catalysts, transitional metal oxide catalysts as well as others, describe the progress of the catalysts in PROX in the latest five years, and extract the underlying reaction mechanism, with the aim to provide guidance for the rational design of efficient catalysts in the future.


menu
Abstract
Full text
Outline
About this article

Recent advances on catalysts for preferential oxidation of CO

Show Author's information Huimin Liu1( )Dezheng Li1Jiawen Guo1Yuqiao Li1Aidi Liu1Yitong Bai1Dehua He2( )
School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

The trace amount of CO in H2-rich gas poisons Pt electrode when it is adopted as feedstock for proton-exchange-membrane fuel cells. Preferential oxidation of CO (PROX) is a promising approach to selectively oxidize the trace amount of CO while keeping H2 unoxidized. Catalyst plays important roles in PROX. To date, enormous catalysts have been developed for PROX. Summarizing the catalysts developed for PROX and unveiling the reaction mechanism could definitely advance this research field. Herein, in this review, according to the nature of the active sites on the catalysts, we classify the catalysts into group VIII metal-based catalyst, group IB metal-based catalysts, group VIII-group IB bimetallic catalysts, transitional metal oxide catalysts as well as others, describe the progress of the catalysts in PROX in the latest five years, and extract the underlying reaction mechanism, with the aim to provide guidance for the rational design of efficient catalysts in the future.

Keywords: bimetallic catalysts, preferential oxidation of CO, group VIII metal-based catalysts, group IB metal-based catalysts, mechanism exploration

References(98)

[1]

Ji, G. Z.; Yao, J. G.; Clough, P. T.; da Costa, J. C. D.; Anthony, E. J.; Fennell, P. S.; Wang, W.; Zhao, M. Enhanced hydrogen production from thermochemical processes. Energy Environ. Sci. 2018, 11, 2647–2672.

[2]

Anzelmo, B.; Wilcox, J.; Liguori, S. Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions. J. Membr. Sci. 2018, 568, 113–120.

[3]

Xiang, G. H.; Zhao, S.; Wei, C. D.; Liu, C. Y.; Fei, H. L.; Liu, Z. G.; Yin, S. F. Atomically dispersed Au catalysts for preferential oxidation of CO in H2-rich stream. Appl. Catal. B: Environ. 2021, 296, 120385.

[4]

Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J. Catal. 1997, 171, 93–105.

[5]

Guo, Z.; Liu, B.; Zhang, Q. H.; Deng, W. P.; Wang, Y.; Yang, Y. H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480–3524.

[6]

Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.

[7]

Liu, K.; Wang, A. Q.; Zhang, T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal. 2012, 2, 1165–1178.

[8]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J. Y.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[9]

Lin, J.; Qiao, B. T.; Liu, J. Y.; Huang, Y. Q.; Wang, A. Q.; Li, L.; Zhang, W. S.; Allard, L. F.; Wang, X. D.; Zhang, T. Design of a highly active Ir/Fe(OH)x catalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew. Chem., Int. Ed. 2012, 51, 2920–2924.

[10]

Huang, Y. Q.; Wang, A. Q.; Li, L.; Wang, X. D.; Su, D. S.; Zhang, T. “Ir-in-ceria”: A highly selective catalyst for preferential CO oxidation. J. Catal. 2008, 255, 144–152.

[11]

Saavedra, J.; Pursell, C. J.; Chandler, B. D. CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: Evidence for a common water-assisted mechanism. J. Am. Chem. Soc. 2018, 140, 3712–3723.

[12]

Whittaker, T.; Kumar, K. B. S.; Peterson, C.; Pollock, M. N.; Grabow, L. C.; Chandler, B. D. H2 oxidation over supported Au nanoparticle catalysts: Evidence for heterolytic H2 activation at the metal-support interface. J. Am. Chem. Soc. 2018, 140, 16469–16487.

[13]

Xie, Y.; Wu, J. F.; Jing, G. J.; Zhang, H.; Zeng, S. H.; Tian, X. P.; Zou, X. Y.; Wen, J.; Su, H. Q.; Zhong, C. J. et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B: Environ. 2018, 239, 665–676.

[14]

Lu, J. C.; Wang, J.; Zou, Q.; He, D. D.; Zhang, L. M.; Xu, Z. Z.; He, S. F.; Luo, Y. M. Unravelling the nature of the active species as well as the doping effect over Cu/Ce-based catalyst for carbon monoxide preferential oxidation. ACS Catal. 2019, 9, 2177–2195.

[15]

Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile Synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 2011, 5, 8212–8222.

[16]

Wootsch, A.; Descorme, C.; Duprez, D. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts. J. Catal. 2004, 225, 259–266.

[17]

Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y. Y.; Jiang, Z.; Zhang, S.; Tan, D. L.; Bao, X. H. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J. Am. Chem. Soc. 2011, 133, 1978–1986.

[18]

Chen, Y.; Lin, J.; Li, L.; Qiao, B. T.; Liu, J. Y.; Su, Y.; Wang, X. D. Identifying size effects of Pt as single atoms and nanoparticles supported on FeOx for the water-gas shift reaction. ACS Catal. 2018, 8, 859–868.

[19]

Park, J. Y.; Zhang, Y. W.; Joo, S. H.; Jung, Y.; Somorjai, G. A. Size effect of RhPt bimetallic nanoparticles in catalytic activity of CO oxidation: Role of surface segregation. Catal. Today 2012, 181, 133–137.

[20]

Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

[21]

Cao, S. F.; Zhao, Y. Y.; Lee, S.; Yang, S. Z.; Liu, J. L.; Giannakakis, G.; Li, M. W.; Ouyang, M. Y.; Wang, D. W.; Sykes, E. C. Flytzani-Stephanopoulos, H. M. High-loading single Pt atom sites [Pt-O(OH)x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions. Sci. Adv. 2020, 6, eaba3809.

[22]

Liu, J. L.; Hensley, A. J. R.; Giannakakis, G.; Therrien, A. J.; Sukkar, A.; Schilling, A. C.; Groden, K.; Ulumuddin, N.; Hannagan, R. T.; Ouyang, M. Y. et al. Developing single-site Pt catalysts for the preferential oxidation of CO: A surface science and first principles-guided approach. Appl. Catal. B: Environ. 2021, 284, 119716.

[23]

Liu, Z.; Yang, J. Q.; Wen, Y. W.; Lan, Y. X.; Guo, L. M.; Chen, X.; Cao, K.; Chen, R.; Shan, B. Promotional effect of H2 pretreatment on the CO PROX performance of Pt1/Co3O4: A first-principles-based microkinetic analysis. ACS Appl. Mater. Interfaces 2022, 14, 27762–27774.

[24]

Cai, J. M.; Liu, Z.; Cao, K.; Lang, Y.; Chu, S. Q.; Shan, B.; Chen, R. Highly dispersed Pt studded on CoOx nanoclusters for CO preferential oxidation in H2. J. Mater. Chem. A 2020, 8, 10180–10187.

[25]

Navas-Cárdenas, C.; Benito, N.; Wolf, E. E.; Gracia, F. Effect of Pt-MOx (M = Fe, Co) interaction on the preferential oxidation of CO over Pt/MOx/TiO2 catalysts prepared by selective electrostatic adsorption. Appl. Catal. A: Gen. 2019, 576, 11–19.

[26]

Chang, X.; Shi, Y.; Yao, Z. W.; Kang, X. X.; Jiang, B. J.; Sun, Y. Novel cobalt nitride-induced oxygen activation on Pt-based catalyst for catalytic oxidation. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 848–852.

[27]

Naren, T.; Jing, G. J.; Xue, L.; Wang, Q.; Zhao, Y. S.; Li, C. X.; Lu, S. H.; Wu, J. F.; Zeng, S. H. Development of platinum assisted ternary catalyst with high activity and selectivity at working temperature of proton-exchange membrane fuel cells for preferential oxidation of CO. Int. J. Hydrogen Energy 2020, 45, 21848–21857.

[28]

Chen, Y.; Lin, J.; Li, L.; Pan, X. L.; Wang, X. D.; Zhang, T. Local structure of Pt species dictates remarkable performance on Pt/Al2O3 for preferential oxidation of CO in H2. Appl. Catal. B: Environ. 2021, 282, 119588.

[29]

Ma, K. X.; Liao, W. Q.; Shi, W.; Xu, F. K.; Zhou, Y.; Tang, C.; Lu, J. Q.; Shen, W. J.; Zhang, Z. H. Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO. J. Catal. 2022, 407, 104–114.

[30]

Soni, Y.; Pradhan, S.; Bamnia, M. K.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Khan, T. S.; Haider, M. A.; Vinod, C. P. Spectroscopic evidences for the size dependent generation of Pd species responsible for the low temperature CO oxidation activity on Pd-SBA-15 nanocatalyst. Appl. Catal. B: Environ. 2020, 272, 118934.

[31]

Liu, X.; Xu, M.; Wan, L. Y.; Zhu, H. D.; Yao, K. X.; Linguerri, R.; Chambaud, G.; Han, Y.; Meng, C. G. Superior catalytic performance of atomically dispersed palladium on graphene in CO oxidation. ACS Catal. 2020, 10, 3084–3093.

[32]

Xu, D. J.; Qiao, L. Y.; Zhou, Z. F.; Wu, J.; Ye, R. P.; Qin, Y. Y.; Yao, Y. G. The exquisite inserting way: Pd and perovskite on the preferential oxidation of CO or H2. Mol. Catal. 2022, 524, 112316.

[33]

Hong, B.; Liang, J. X.; Sun, X. C.; Tian, M.; Huang, F.; Zheng, Y.; Lin, J.; Li, L.; Zhou, Y. L.; Wang, X. D. Widening temperature window for CO preferential oxidation in H2 by Ir nanoparticles interaction with framework Fe of hexaaluminate. ACS Catal. 2021, 11, 5709–5717.

[34]

Wang, C. L.; Yao, Q.; Cao, L. N.; Li, J. J.; Chen, S.; Lu, J. L. Precise tailoring of Ir-FeOx interfaces for improved catalytic performance in preferential oxidation of carbon monoxide in hydrogen. J. Phys. Chem. C 2019, 123, 29262–29270.

[35]

Kim, J.; Kim, T. W.; Kim, H. B.; Kang, J. K.; Park, E. D. Effects of hydrothermal oxidation time of Al on the catalytic performance of Ru/Al@Al2O3 for selective oxidation of CO in H2. Fuel 2021, 301, 121040.

[36]

Mohamed, Z.; Dasireddy, V. D. B. C.; Singh, S.; Friedrich, H. B. TiO2 and ZrO2 supported Ru catalysts for CO mitigation following the water-gas shift reaction. Int. J. Hydrogen Energy 2018, 43, 22291–22302.

[37]

Saavedra, J.; Whittaker, T.; Chen, Z. F.; Pursell, C. J.; Rioux, R. M.; Chandler, B. D. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2. Nat. Chem. 2016, 8, 585–590.

[38]

Qiao, B. T.; Liu, J. X.; Wang, Y. G.; Lin, Q. Q.; Liu, X. Y.; Wang, A. Q.; Li, J.; Zhang, T.; Liu, J. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015, 5, 6249–6254.

[39]

Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 2020, 120, 464–525.

[40]

Beck, A.; Yang, A. C.; Leland, A. R.; Riscoe, A. R.; Lopez, F. A.; Goodman, E. D.; Cargnello, M. Understanding the preferential oxidation of carbon monoxide (PrOx) using size-controlled Au nanocrystal catalyst. AIChE J. 2018, 64, 3159–3167.

[41]

Qwabe, L. Q.; Friedrich, H. B.; Singh, S. Remediation of CO by oxidation over Au nanoparticles supported on mixed metal oxides. J. Environ. Chem. Eng. 2019, 7, 102827.

[42]

Gan, T.; He, Q.; Zhang, H.; Xiao, H. J.; Liu, Y. F.; Zhang, Y.; He, X. H.; Ji, H. B. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 2020, 389, 124490.

[43]

Qi, C. X.; Zheng, Y. H.; Lin, H.; Su, H. J.; Sun, X.; Sun, L. B. CO oxidation over gold catalysts supported on CuO/Cu2O both in O2-rich and H2-rich streams: Necessity of copper oxide. Appl. Catal. B: Environ. 2019, 253, 160–169.

[44]

Chen, J.; Wang, C. L.; Zong, C. C.; Chen, S.; Wang, P. C.; Chen, Q. W. High catalytic performance of Au/Bi2O3 for preferential oxidation of CO in H2. ACS Appl. Mater. Interfaces 2021, 13, 29532–29540.

[45]

Boukha, Z.; González-Velasco, J. R.; Gutiérrez-Ortiz, M. A. Exceptional performance of gold supported on fluoridated hydroxyapatite catalysts in CO-cleanup of H2-rich stream: High activity and resistance under PEMFC operation conditions. Appl. Catal. B: Environ. 2021, 292, 120142.

[46]

Carltonbird, M.; Eaimsumang, S.; Pongstabodee, S.; Boonyuen, S.; Smith, S. M.; Luengnaruemitchai, A. Effect of the exposed ceria morphology on the catalytic activity of gold/ceria catalysts for the preferential oxidation of carbon monoxide. Chem. Eng. J. 2018, 344, 545–555.

[47]

Lakshmanan, P.; Park, E. D. Preferential CO oxidation in H2 over Au/La2O3/Al2O3 catalysts: The effect of the catalyst reduction method. Catalysts. 2018, 8, 183.

[48]

Peng, L.; Wang, L. M.; Zhu, F.; Liu, J. Y.; Yan, W. F.; Gu, X. H. Polydopamine modified Au/FAU catalytic membrane for CO preferential oxidation. Chin. J. Chem. Eng. 2019, 27, 2560–2565.

[49]

Zhang, A. A.; Zhang, L.; Jing, G. J.; Zhang, H.; Wang, S.; Su, H. Q.; Zeng, S. H. Promotion of Au3+ reduction on catalytic performance over the Au/CuO-CeO2 catalysts for preferential CO oxidation. Int. J. Hydrogen Energy 2018, 43, 10322–10333.

[50]

Jing, G. J.; Zhang, L.; Ma, Y. R.; Wu, J. F.; Wang, Q.; Wu, G. Q.; Yan, L. H.; Zeng, S. H. Comparison of Au–Ce and Au–Cu interaction over Au/CeO2–CuO catalysts for preferential CO oxidation. Crystengcomm 2019, 21, 363–371.

[51]

Potemkin, D. I.; Filatov, E. Y.; Zadesenets, A. V.; Gorlova, A. M.; Nikitina, N. A.; Pichugina, D. A. A comparative study of CO preferential oxidation over Pt and Pt0.5Co0. 5 nanoparticles: Kinetic study and quantum-chemical calculations. Mater. Lett. 2020, 260, 126915.

[52]

Du, X. D.; Lang, Y.; Cao, K.; Yang, J. Q.; Cai, J. M.; Shan, B.; Chen, R. Bifunctionally faceted Pt/Ru nanoparticles for preferential oxidation of CO in H2. J. Catal. 2021, 396, 148–156.

[53]

Antoniassi, R. M.; Machado, A. P.; Paiva, A. R. N.; Queiroz, C. M. S.; Vaz, J. M.; Spinacé, E. V.; Silva, J. C. M.; Carmine, E.; Camargo, P. H. C.; Torresi, R. M. One-step synthesis of PtFe/CeO2 catalyst for the Co-preferential oxidation reaction at low temperatures. Int. J. Hydrogen Energy 2021, 46, 17751–17762.

[54]

Rodrigues Fiuza, T. E.; Zanchet, D. Supported AuCu alloy nanoparticles for the preferential oxidation of CO (CO-PROX). ACS Appl. Nano Mater. 2020, 3, 923–934.

[55]

Liao, X. M.; Liu, Y. M.; Chu, W.; Sall, S.; Petit, C.; Pitchon, V.; Caps, V. Promoting effect of AuCu alloying on Au-Cu/CeO2-catalyzed CO oxidation: A combined kinetic and in situ DRIFTS study. J. Catal. 2020, 382, 329–338.

[56]

Khobragade, R.; Dahake, P.; Labhsetwar, N.; Saravanan, G. A PdCu nanoalloy catalyst for preferential CO oxidation in the presence of hydrogen. New J. Chem. 2021, 45, 4246–4252.

[57]

Li, X.; Xing, L. S.; Zhao, W. J.; Wang, Y. Z.; Zhao, Y. X. Low-temperature CO preferential oxidation in H2-rich stream over iron modified Pd-Cu/hydroxyapatite catalyst. Int. J. Hydrogen Energy 2021, 46, 29940–29950.

[58]

Khobragade, R.; Yearwar, D.; Labhsetwar, N.; Saravanan, G. Alumina supported nano-platinum on copper nanoparticles prepared via galvanic displacement reaction for preferential carbon monoxide oxidation in presence of hydrogen. Int. J. Hydrogen Energy 2019, 44, 28757–28768.

[59]

Liu, Y.; Zhang, A. A.; Xue, L.; Zhang, H.; Hao, Y. H.; Wang, Y.; Wu, J. F.; Zeng, S. H. Dual active sites of CO adsorption and activation over PtCu alloy nanocages for preferential oxidation of carbon monoxide. ACS Appl. Energy Mater. 2022, 5, 604–614.

[60]

Jain, N.; Roy, A.; Nair, S. Reduced SrTiO3-supported Pt-Cu alloy nanoparticles for preferential oxidation of CO in excess hydrogen. Nanoscale. 2019, 11, 22423–22431.

[61]

Palma, S.; González-Castaño, M.; Romero-Sarria, F.; Antonio Odriozola, J. Unravelling the role of Fe in trimetallic Fe-Cu-Pt/Al2O3 catalysts for CO-PROX reaction. Mol. Catal. 2022, 517, 112015.

[62]

Zhu, C. W.; Gu, X. K.; Li, W. X. Bimetallic Cu/Rh catalyst for preferential oxidation of CO in H2: A DFT study. J. Phys. Chem. C 2021, 125, 19697–19705.

[63]

Dasireddy, V. D. B. C.; Bharuth-Ram, K.; Hanzel, D.; Likozar, B. Heterogeneous Cu-Fe oxide catalysts for preferential CO oxidation (PROX) in H2-rich process streams. RSC Adv. 2020, 10, 35792–35802.

[64]

Bathomarco, C. G.; Franke, K. N.; Ferreira, A. P. Aspects of the interaction between Au and Fe in supported catalysts applied to the preferential CO oxidation. Catal. Today. 2020, 344, 176–189.

[65]

Wang, L. X.; Deo, S.; Dooley, K.; Janik, M. J.; Rioux, R. M. Influence of metal nuclearity and physicochemical properties of ceria on the oxidation of carbon monoxide. Chin. J. Catal. 2020, 41, 951–962.

[66]

Davó-Quiñonero, A.; López-Rodríguez, S.; Chaparro-Garnica, C.; Martín-García, I.; Bailón-García, E.; Lozano-Castelló, D.; Bueno-López, A.; García-Melchor, M. Investigations of the effect of H2 in CO oxidation over ceria catalysts. Catalysts 2021, 11, 1556.

[67]

Arena, F.; Ferrante, F.; Di Chio, R.; Bonura, G.; Frusteri, F.; Frusteri, L.; Prestianni, A.; Morandi, S.; Martra, G.; Duca, D. DFT and kinetic evidences of the preferential CO oxidation pattern of manganese dioxide catalysts in hydrogen stream (PROX). Appl. Catal. B: Environ. 2022, 300, 120715.

[68]

Zhang, Z. X.; Tian, Y.; Zhao, W. Y.; Wu, P. P.; Zhang, J.; Zheng, L. R.; Ding, T.; Li, X. G. Hydroxyl promoted preferential and total oxidation of CO over ε-MnO2 catalyst. Catal. Today 2020, 355, 214–221.

[69]

Zhong, L. P.; Kropp, T.; Baaziz, W.; Ersen, O.; Teschner, D.; Schlögl, R.; Mavrikakis, M.; Zafeiratos, S. Correlation between reactivity and oxidation state of cobalt oxide catalysts for CO preferential oxidation. ACS Catal. 2019, 9, 8325–8336.

[70]

Nyathi, T. M.; Fischer, N.; York, A. P. E.; Claeys, M. Environment-dependent catalytic performance and phase stability of Co3O4 in the preferential oxidation of carbon monoxide studied in situ. ACS Catal. 2020, 10, 11892–11911.

[71]

Nyathi, T. M.; Fadlalla, M. I.; Fischer, N.; York, A. P. E.; Olivier, E. J.; Gibson, E. K.; Wells, P. P.; Claeys, M. Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ. Appl. Catal. B: Environ. 2021, 297, 120450.

[72]

Zhong, L. P.; Barreau, M.; Chen, D. K.; Caps, V.; Haevecker, M.; Teschner, D.; Simonne, D. H.; Borfecchia, E.; Baaziz, W.; Šmíd, B. et al. Effect of manganese promotion on the activity and selectivity of cobalt catalysts for CO preferential oxidation. Appl. Catal. B: Environ. 2021, 297, 120397.

[73]

Rattigan, E.; Sun, Z. Z.; Gallo, T.; Angel Nino, M.; de Oliveira Parreiras, S.; Martín-Fuentes, C.; Carlos Martin-Romano, J.; Ecija, D.; Éscudero, C.; Villar, I. et al. The cobalt oxidation state in preferential CO oxidation on CoOx/Pt(111) investigated by operando X-ray photoemission spectroscopy. Phys. Chem. Chem. Phys. 2022, 24, 9236–9246.

[74]

Reis, C. G. M.; Almeida, K. A.; Silva, T. F.; Assaf, J. M. CO preferential oxidation reaction aspects in a nanocrystalline CuO/CeO2 catalyst. Catal. Today 2020, 344, 124–128.

[75]

Papavasiliou, J.; Vakros, J.; Avgouropoulos, G. Impact of acid treatment of CuO-CeO2 catalysts on the preferential oxidation of CO reaction. Catal. Commun. 2018, 115, 68–72.

[76]

Davó-Quiñonero, A.; Bailón-García, E.; López-Rodríguez, S.; Juan-Juan, J.; Lozano-Castelló, D.; García-Melchor, M.; Herrera, F. C.; Pellegrin, E.; Escudero, C.; Bueno-López, A. Insights into the oxygen vacancy filling mechanism in CuO/CeO2 catalysts: A key step toward high selectivity in preferential CO oxidation. ACS Catal. 2020, 10, 6532–6545.

[77]

Adak, S.; Rabeah, J.; Ranjan, R.; Khan, T. S.; Poddar, M. K.; Gupta, R. K.; Sasaki, T.; Kumar, S.; Bordoloi, A.; Gopinath, C. S. et al. In-situ experimental and computational approach to investigate the nature of active site in low-temperature CO-PROX over CuOx-CeO2 catalyst. Appl. Catal. A: Gen. 2021, 624, 118305.

[78]

Qiu, Z. H.; Guo, X. L.; Mao, J. X.; Zhou, R. X. New design and construction of abundant active surface interfacial copper entities in CuxCe1−xO2 nanorod catalysts for CO-PROX. J. Phys. Chem. C 2021, 125, 9178–9189.

[79]

Bu, Y. B.; Er, S.; Niemantsverdriet, J. W.; Fredriksson, H. O. A. Preferential oxidation of CO in H2 on Cu and Cu/CeOx catalysts studied by in situ UV–Vis and mass spectrometry and DFT. J. Catal. 2018, 357, 176–187.

[80]

Landi, G.; Di Benedetto, A.; Lisi, L. Two-stage strategy for CO removal from H2-rich streams over (nano-) CuO/CeO2 structured catalyst at low temperature. Appl. Sci. 2018, 8, 789.

[81]

Chen, F. Q.; Xia, Y.; Lao, J. Z.; Cheng, D. G.; Zhan, X. L. Unraveling the change in multiple Cu species present in CuO/CeO2 over the preferential CO oxidation reaction. Ind. Eng. Chem. Res. 2021, 60, 9068–9079.

[82]

Papavasiliou, J.; Rawski, M.; Vakros, J.; Avgouropoulos, G. A novel post-synthesis modification of CuO-CeO2 catalysts: Effect on their activity for selective CO oxidation. ChemCatChem 2018, 10, 2096–2106.

[83]

Zhang, X. D.; Zhang, X. L.; Song, L.; Hou, F. L.; Yang, Y. Q.; Wang, Y. X.; Liu, N. Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: Effects of preparation methods. Int. J. Hydrogen Energy 2018, 43, 18279–18288.

[84]

Wang, L.; Peng, H.; Shi, S. L.; Hu, Z.; Zhang, B. Z.; Ding, S. M.; Wang, S. H.; Chen, C. Metal-organic framework derived hollow CuO/CeO2 nano-sphere: To expose more highly dispersed Cu-O-Ce interface for enhancing preferential CO oxidation. Appl. Surf. Sci. 2022, 573, 151611.

[85]

Gong, X.; Wang, W. W.; Fu, X. P.; Wei, S.; Yu, W. Z.; Liu, B. C.; Jia, C. J.; Zhang, J. Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide. Fuel 2018, 229, 217–226.

[86]

Liu, X. L.; Li, X. C.; Qian, H.; Chi, J.; Chen, B.; Wang, S. H.; Chen, C.; Zhang, N. Preferential CO oxidation over CuO-CeO2 catalyst synthesized from MOF with nitrogen-containing ligand as precursor. Int. J. Hydrogen Energy 2018, 43, 23299–23309.

[87]

Zou, Q.; Zhao, Y. H.; Jin, X.; Fang, J.; Li, D. Y.; Li, K. Z.; Lu, J. C.; Luo, Y. M. Ceria-nano supported copper oxide catalysts for CO preferential oxidation: Importance of oxygen species and metal-support interaction. Appl. Surf. Sci. 2019, 494, 1166–1176.

[88]

Jie, W. W.; Liu, Y. M.; Deng, W. Y.; Liu, Q.; Qiu, M.; Liu, S. W.; Hu, J. Q.; Gong, L. Effect of one-dimensional ceria morphology on CuO/CeO2 catalysts for CO preferential oxidation. J. Solid State Chem. 2022, 311, 123109.

[89]

Wang, Y. K.; Zhang, Q. Y.; Lin, Y. W.; Huang, W. J.; Ding, D.; Zheng, Y. P.; Chen, M. S.; Wan, H. L. Insight into the high efficiency of Cu/CeO2(110) catalysts for preferential oxidation of CO from hydrogen rich fuel. Appl. Surf. Sci. 2021, 566, 150707.

[90]

Wang, Q.; Zhang, H.; Wu, J. F.; Tuya, N.; Zhao, Y. S.; Liu, S. P.; Dong, Y. J.; Li, P.; Xu, Y. M.; Zeng, S. H. Experimental and computational studies on copper-cerium catalysts supported on nitrogen-doped porous carbon for preferential oxidation of CO. Catal. Sci. Technol. 2019, 9, 3023–3035.

[91]

Wei, Y.; Gao, Y.; Xu, X. Y.; Si, J. Q.; Sun, W. D.; Zhao, G. F.; Liu, Y.; Lu, Y. High jolt-resistance monolithic CuO-CeO2/AlOOH/Al-fiber catalyst for CO-PROX: Influence of AlOOH/Al-fiber calcination on Cu–Ce interaction. Int. J. Hydrogen Energy 2022, 47, 13030–13043.

[92]

Tiscornia, I. S.; Lacoste, A. M.; Gómez, L. E.; Boix, A. V. CuO-CeO2/SiO2 coating on ceramic monolith: Effect of the nature of the catalyst support on CO preferential oxidation in a H2-rich stream. Int. J. Hydrogen Energy 2020, 45, 6636–6650.

[93]

Shi, L. M.; Zhang, G.; Wang, Y. J. Tailoring catalytic performance of carbon nanotubes confined CuO-CeO2 catalysts for CO preferential oxidation. Int. J. Hydrogen Energy 2018, 43, 18211–18219.

[94]

Zhao, Y. H.; Chen, K. Z.; Zou, Q.; Fang, J.; Zhu, S. S.; He, S. F.; Lu, J. C.; Luo, Y. M. Insights into the essential roles of tin and chloride species within Cu-CeO2 based catalysts for CO preferential oxidation in H2-rich stream. J. Power Sources. 2021, 484, 229181.

[95]

Jokar, R.; Alavi, S. M.; Rezaei, M.; Akbari, E. Catalytic performance of copper oxide supported alpha-MnO2 nanowires for the CO preferential oxidation in H2-rich stream. Int. J. Hydrogen Energy 2021, 46, 32503–32513.

[96]

Dey, S.; Dhal, G. C.; Mohan, D.; Prasad, R.; Gupta, R. N. Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide. Appl. Surf. Sci. 2018, 441, 303–316.

[97]

Andache, M.; Kharat, A. N.; Rezaei, M. Preparation of mesoporous nanocrystalline CuO-ZnO-Al2O3 catalysts for the H2 purification using catalytic preferential oxidation of CO (CO-PROX). Int. J. Hydrogen Energy 2019, 44, 27401–27411.

[98]

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 August 2022
Revised: 20 September 2022
Accepted: 11 October 2022
Published: 31 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgement

This work received financial support from the National Natural Science Foundation of China (No. 21902116) and the Scientific Research Foundation of Liaoning province of China (No. JQL202015403).

Return