AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution

Fangxu Dai1Mingming Zhang1Mingzhong Mi1Zhenjiang Li2Jun Xing1( )Lei Wang1,3( )
Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao 266042, China
Show Author Information

Graphical Abstract

A general strategy to fabricate highly efficient Pt/TiO2 photocatalyst by coupling the Pt co-catalysts and surface oxygen vacancies (VO) of TiO2.

Abstract

Semiconductors-based heterogeneous photocatalytic water splitting has been extensively studied, but it still remains challenging to accelerate the separation of electron–hole pairs and facilitate the reaction kinetics. Here we report a general strategy to fabricate highly efficient Pt/TiO2 photocatalyst by coupling the Pt co-catalysts and surface oxygen vacancies (VO) of TiO2. TiO2 was pre-modified with alkali or alkaline earth metals ion solutions, which produce a large number of surface hydroxyl on TiO2. Subsequently, the photodeposited Pt sub-nanoparticles substitute surface hydroxyl and induce surface VO on TiO2. The coupling of Pt and surface VO on TiO2 can accelerate the extraction of photo-charges through the interaction of Pt–VO–Ti bonds and reduce the hydrogen evolution barrier, thereby promoting the photocatalytic activity. The synthesized Pt-VO-TiO2 sample exhibits a photocatalytic hydrogen evolution activity as high as 1.5 L·g−1·h−1, which is 2.2 times that of traditional Pt/TiO2. Our findings in-depth understand the synergistic effect of co-catalysts and defects on photocatalysis and open up new possibilities for achieving robust photocatalytic water splitting.

Electronic Supplementary Material

Download File(s)
12274_2022_5181_MOESM1_ESM.pdf (4.8 MB)
12274_2022_5181_MOESM2_ESM.pdf (7.5 MB)

References

[1]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238, 37–38.

[2]

Thompson, T. L.; Yates, J. T. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 2006, 106, 4428–4453.

[3]

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

[4]

Yi, S. S.; Zhang, X. B.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Non-noble metals applied to solar water splitting. Energy. Environ. Sci. 2018, 11, 3128–3156.

[5]

Pacchioni, G.; Freund, H. Controlling the charge state of supported nanoparticles in catalysis: Lessons from model systems. Chem. Soc. Rev. 2018, 47, 8474–8502.

[6]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[7]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu. J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[8]

Wenderich, K.; Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chem. Rev. 2016, 116, 14587–14619.

[9]

Moss, B.; Wang, Q.; Butler, K. T.; Grau-Crespo, R.; Selim, S.; Regoutz, A.; Hisatomi, T.; Godin, R.; Payne, D. J.; Kafizas, A. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 2021, 20, 511–517.

[10]

Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

[11]

Chen, H.; Yang, Z. Z.; Wang, X.; Polo-Garzon, F.; Halstenberg, P. W.; Wang, T.; Suo, X.; Yang, S. Z.; Meyer III, H. M.; Wu, Z. L. et al. Photoinduced strong metal–support interaction for enhanced catalysis. J. Am. Chem. Soc. 2021, 143, 8521–8526.

[12]

Liu, M. C.; Chen, Y. B.; Su, J. Z.; Shi, J. W.; Wang, X. X.; Guo, L. J. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151.

[13]

Bi, W. T.; Li, X. G.; Zhang, L.; Jin, T.; Zhang, L. D.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 2015, 6, 8647.

[14]

Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

[15]

Li, G. K.; Jang, H.; Liu, S. G.; Li, Z. J.; Kim, M. G.; Qin, Q.; Liu, X. E.; Cho, J. The synergistic effect of Hf–O–Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat. Commun. 2022, 13, 1270.

[16]

Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.

[17]

Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

[18]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

[19]

Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.

[20]

Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

[21]

Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

[22]

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

[23]

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

[24]

Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci Bull. 2020, 65, 934–943.

[25]

Wang, Z. L.; Wang, L. X.; Cheng, B.; Yu, H. G.; Yu, J. G. Photocatalytic H2 evolution coupled with furfuralcohol oxidation over Pt-modified ZnCdS solid solution. Small Methods 2021, 5, 2100979.

[26]

Dai, F. X.; Guo, Z. Y.; Zhao, W. J.; Li, Z. J.; Xing, J.; Wang, L. Interfacial engineering boosting charge extraction for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138015.

[27]

Tamai, K.; Hosokawa, S.; Asakura, H.; Teramura, K.; Tanaka, T. Low-temperature NOx trapping on alkali or alkaline earth metal modified TiO2 photocatalyst. Catal. Today 2019, 332, 76–82.

[28]

Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.

[29]

Wang, L.; Yue, H. Q.; Hua, Z. L.; Wang, H. Y.; Li, X. B.; Li, L. C. Highly active Pt/NaxTiO2 catalyst for low temperature formaldehyde decomposition. Appl. Catal. B: Environ. 2017, 219, 301–313.

[30]

Liu, F.; Feng, N. D.; Wang, Q.; Xu, J.; Qi, G. D.; Wang, C.; Deng, F. Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy. J. Am. Chem. Soc. 2017, 139, 10020–10028.

[31]

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

[32]

Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L.; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 23112–23116.

[33]

Xiao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.

[34]

Zhu, K. N.; Zhu, Q.; Jiang, M. P.; Zhang, Y. W.; Shao, Z. Y.; Geng, Z. B.; Wang, X. Y.; Zeng, H.; Wu, X. F.; Zhang, W. et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2022, 61, e202207600.

[35]

Lv, T. P.; Xiao, B.; Xia, F. J.; Chen, M. P.; Zhao, J. H.; Ma, Y. X.; Wu, J. S.; Zhang, J.; Zhang, Y. M.; Liu, Q. J. Insights into synergistic effect of Pd single atoms and sub-nanoclusters on TiO2 for enhanced photocatalytic H2 evolution. Chem. Eng. J. 2022, 450, 137873.

[36]

Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

Nano Research
Pages 4736-4741
Cite this article:
Dai F, Zhang M, Mi M, et al. Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution. Nano Research, 2023, 16(4): 4736-4741. https://doi.org/10.1007/s12274-022-5181-x
Topics:

6347

Views

8

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 11 September 2022
Revised: 09 October 2022
Accepted: 10 October 2022
Published: 23 November 2022
© Tsinghua University Press 2022
Return