Journal Home > Volume 16 , Issue 4

The effective electron and interface/structural coupling for heterostructure electrocatalyst is the key to regulating the intrinsic activity and stability for oxygen evolution reaction (OER). Herein, a facile strategy is developed to fabricate well-dispersed zero-dimensional (0D) metallic Co9S8 nanoparticles on two-dimensional (2D) FeS nanosheets, forming FeS-Co9S8 Schottky heterostructures with abundant heterointerfaces as OER electrocatalyst. The strong electronic coupling between FeS and Co9S8 expedites electrons flow from Fe atoms in FeS nanosheets to Co atoms in tetrahedron sites (CoTd), thereby leading to the structural integrity of the heterostructure and the constant exposure of active sites. Operando Raman spectroscopy also indicates the Co sites in the FeS-Co9S8 Schottky heterostructure are OER active sites. Therefore, FeS-Co9S8 heterostructure supported by iron foam (FeS-Co9S8/IF) shows the remarkable activity and durability, achieving an industrial-level 500 mA·cm−2 current density at an overpotential of only 332 mV and maintaining for 100 h. This work demonstrates that constructing Schottky heterostructure interface with strong coupling effect may be a good strategy for excellent catalytic performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

0D–2D Schottky heterostructure coupling of FeS nanosheets and Co9S8 nanoparticles for long-term industrial-level water oxidation

Show Author's information Hai-Jun LiuNing YuXiao-Qing YuanHui-Ying ZhaoXin-Yu ZhangYong-Ming Chai( )Bin Dong( )
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

The effective electron and interface/structural coupling for heterostructure electrocatalyst is the key to regulating the intrinsic activity and stability for oxygen evolution reaction (OER). Herein, a facile strategy is developed to fabricate well-dispersed zero-dimensional (0D) metallic Co9S8 nanoparticles on two-dimensional (2D) FeS nanosheets, forming FeS-Co9S8 Schottky heterostructures with abundant heterointerfaces as OER electrocatalyst. The strong electronic coupling between FeS and Co9S8 expedites electrons flow from Fe atoms in FeS nanosheets to Co atoms in tetrahedron sites (CoTd), thereby leading to the structural integrity of the heterostructure and the constant exposure of active sites. Operando Raman spectroscopy also indicates the Co sites in the FeS-Co9S8 Schottky heterostructure are OER active sites. Therefore, FeS-Co9S8 heterostructure supported by iron foam (FeS-Co9S8/IF) shows the remarkable activity and durability, achieving an industrial-level 500 mA·cm−2 current density at an overpotential of only 332 mV and maintaining for 100 h. This work demonstrates that constructing Schottky heterostructure interface with strong coupling effect may be a good strategy for excellent catalytic performances.

Keywords: oxygen evolution reaction, Schottky heterostructure, strong electronic coupling, electron rearrangement, operando Raman

References(56)

[1]

Li, Y.; Chen, G.; Zhu, Y. P.; Hu, Z. W.; Chan, T. S.; She, S. X.; Dai, J.; Zhou, W.; Shao, Z. P. Activating both basal plane and edge sites of layered cobalt oxides for boosted water oxidation. Adv. Funct. Mater. 2021, 31, 2103569.

[2]

Gan, Y. H.; Cui, M. L.; Dai, X. P.; Ye, Y.; Nie, F.; Ren, Z. T.; Yin, X. L.; Wu, B. Q.; Cao, Y. H.; Cai, R. et al. Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Res. 2022, 15, 3940–3945.

[3]

Chen, Z. J.; Zheng, R. J.; Graś, M.; Wei, W.; Lota, G.; Chen, H.; Ni, B. J. Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Appl. Catal. B: Environ. 2021, 288, 120037.

[4]

Bao, F. X.; Kemppainen, E.; Dorbandt, I.; Xi, F. X.; Bors, R.; Maticiuc, N.; Wenisch, R.; Bagacki, R.; Schary, C.; Michalczik, U. et al. Host, suppressor, and promoter-the roles of Ni and Fe on oxygen evolution reaction activity and stability of NiFe alloy thin films in alkaline media. ACS Catal. 2021, 11, 10537–10552.

[5]

Xu, S. R.; Yu, X.; Luo, L.; Li, W. J.; Du, Y. S.; Kong, Q. Q.; Wu, Q. Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 2022, 15, 4942–4949.

[6]

Wu, C.; Zhang, Y. H.; Dong, D.; Xie, H. M.; Li, J. H. Co9S8 nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Nanoscale 2017, 9, 12432–12440.

[7]

Hegner, F. S.; Garcés-Pineda, F. A.; González-Cobos, J.; Rodríguez-García, B.; Torréns, M.; Palomares, E.; López, N.; Galán-Mascarós, J. R. Understanding the catalytic selectivity of cobalt hexacyanoferrate toward oxygen evolution in seawater electrolysis. ACS Catal. 2021, 11, 13140–13148.

[8]

Ren, X.; Wei, C.; Sun, Y. M.; Liu, X. Z.; Meng, F. Q.; Meng, X. X.; Sun, S. N.; Xi, S. B.; Du, Y. H.; Bi, Z. F. et al. Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 2020, 32, 2001292.

[9]

Zhang, Y. C.; Han, C. D.; Gao, J.; Pan, L.; Wu, J. T.; Zhu, X. D.; Zou, J. J. NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: A review. ACS Catal. 2021, 11, 12485–12509.

[10]

Wang, Q. Q.; Li, J. Q.; Li, Y. J.; Shao, G. M.; Jia, Z.; Shen, B. L. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 2022, 15, 8751–8759.

[11]

Fu, G. T.; Liu, Y.; Chen, Y. F.; Tang, Y. W.; Goodenough, J. B.; Lee, J. M. Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries. Nanoscale 2018, 10, 19937–19944.

[12]

Choi, J.; Kim, D.; Zheng, W. R.; Yan, B. Y.; Li, Y.; Lee, L. Y. S.; Piao, Y. Interface engineered NiFe2O4−x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Appl. Catal. B: Environ. 2021, 286, 119857.

[13]

Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-band centers endows (NixFe1−x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

[14]

Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

[15]

Zhang, P. F.; Liu, Y. D.; Liang, T. T.; Ang, E. H.; Zhang, X.; Ma, F.; Dai, Z. F. Nitrogen-doped carbon wrapped Co-Mo2C dual Mott–Schottky nanosheets with large porosity for efficient water electrolysis. Appl. Catal. B: Environ. 2021, 284, 119738.

[16]

Liu, X. J.; Liu, R.; Wang, J. M.; Liu, Y. R.; Li, L. H.; Yang, W. X.; Feng, X.; Wang, B. Synergizing high valence metal sites and amorphous/crystalline interfaces in electrochemical reconstructed CoFeOOH heterostructure enables efficient oxygen evolution reaction. Nano Res. 2022, 15, 8857–8864.

[17]

Zhou, Y. N.; Yu, W. L.; Cao, Y. N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F. L.; Fan, R. Y.; Zhou, Y. L.; Chai, Y. M. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B: Environ. 2021, 292, 120150.

[18]

Dong, D. Q.; Wu, Z. X.; Wang, J.; Fu, G. T.; Tang, Y. W. Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 16068–16088.

[19]

Wu, Q. K.; Wang, S. R.; Guo, J. H.; Feng, X. Q.; Li, H.; Lv, S. S.; Zhou, Y.; Chen, Z. Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction. Nano Res. 2022, 15, 1901–1908.

[20]

Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

[21]

Lin, Y.; Sun, K. A.; Chen, X. M.; Chen, C.; Pan, Y.; Li, X. Y.; Zhang, J. High-precision regulation synthesis of Fe-doped Co2P nanorod bundles as efficient electrocatalysts for hydrogen evolution in all-pH range and seawater. J. Energy Chem. 2021, 55, 92–101.

[22]

Zhang, T.; Wu, M. Y.; Yan, D. Y.; Mao, J.; Liu, H.; Hu, W. B.; Du, X. W.; Ling, T.; Qiao, S. Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 2018, 43, 103–109.

[23]

Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.

[24]

Li, B. S.; Liu, S. Y.; Lai, C.; Zeng, G. M.; Zhang, M. M.; Zhou, M. Z.; Huang, D. L.; Qin, L.; Liu, X. G.; Li, Z. W. et al. Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation. Appl. Catal. B: Environ. 2020, 266, 118650.

[25]

Wang, B.; Tang, C.; Wang, H. F.; Chen, X.; Cao, R.; Zhang, Q. A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Adv. Mater. 2019, 31, 1805658.

[26]

Jiang, R.; Chen, X.; Deng, J. X.; Wang, T. Y.; Wang, K.; Chen, Y. L.; Jiang, J. Z. In situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction. J. Energy Chem. 2020, 47, 79–85.

[27]

Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

[28]

Lao, M. M.; Rui, K.; Zhao, G. Q.; Cui, P. X.; Zheng, X. S.; Dou, S. X.; Sun, W. P. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 58, 5432–5437.

[29]

Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

[30]

Guo, Y. N.; Tang, J.; Henzie, J.; Jiang, B.; Xia, W.; Chen, T.; Bando, Y.; Kang, Y. M.; Hossain, M. S. A.; Sugahara, Y. et al. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic–metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 2020, 14, 4141–4152.

[31]

Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.

[32]

Narendra Kumar, A. V.; Li, Y. H.; Yu, H. J.; Yin, S. L.; Xue, H. R.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. 3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst. Electrochim. Acta 2018, 292, 107–114.

[33]

Vineesh, T. V.; Alwarappan, S.; Narayanan, T. N. The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale 2015, 7, 6504–6509.

[34]

Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1702300.

[35]

Li, B.; Gu, P.; Feng, Y. C.; Zhang, G. X.; Huang, K. S.; Xue, H. G.; Pang, H. Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 2017, 27, 1605784.

[36]

Li, Y. J.; Huang, B. L.; Sun, Y. J.; Luo, M. C.; Yang, Y.; Qin, Y. N.; Wang, L.; Li, C. J.; Lv, F.; Zhang, W. Y. et al. Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 2019, 15, 1804212.

[37]

Naderi, A.; Yong, X.; Karamad, M.; Cai, J. Y.; Zang, Y. P.; Gates, I.; Siahrostami, S.; Wang, G. M. Ternary cobalt-iron sulfide as a robust electrocatalyst for water oxidation: A dual effect from surface evolution and metal doping. Appl. Surf. Sci. 2021, 542, 148681.

[38]

Huang, L.; Wu, H.; Liu, H.; Zhang, Y. Phosphorous doped cobalt-iron sulfide/carbon nanotube as active and robust electrocatalysts for water splitting. Electrochim. Acta 2019, 318, 892–900.

[39]

Sennu, P.; Christy, M.; Aravindan, V.; Lee, Y. G.; Nahm, K. S.; Lee, Y. S. Two-dimensional mesoporous cobalt sulfide nanosheets as a superior anode for a Li-ion battery and a bifunctional electrocatalyst for the Li-O2 system. Chem. Mater. 2015, 27, 5726–5735.

[40]

Wang, X. F.; Xiang, Q. Y.; Liu, B.; Wang, L. J.; Luo, T.; Chen, D.; Shen, G. Z. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013, 3, 2007.

[41]

Yan, S. C.; Wang, K.; Zhou, F.; Lin, S. R.; Song, H. Z.; Shi, Y.; Yao, J. Ultrafine Co: FeS2/CoS2 heterostructure nanowires for highly efficient hydrogen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 514–520.

[42]

Wang, C.; Wang, T. Y.; Liu, J. J.; Zhou, Y.; Yu, D. W.; Cheng, J. K.; Han, F.; Li, Q.; Chen, J. T.; Huang, Y. H. Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2018, 11, 2467–2475.

[43]

Wang, X. M.; Zong, X.; Liu, B.; Long, G. F.; Wang, A. Q.; Xu, Z. Q.; Song, R.; Ma, W. G.; Wang, H.; Li, C. Boosting electrochemical water oxidation on NiFe (oxy)hydroxides by constructing Schottky junction toward water electrolysis under industrial conditions. Small 2022, 18, 2105544.

[44]

He, K.; Tadesse Tsega, T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903–11909.

[45]

Zheng, W. R.; Liu, M. J.; Lee, L. Y. S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites. ACS Catal. 2020, 10, 81–92.

[46]

Ji, Q. Q.; Kong, Y.; Tan, H.; Duan, H. L.; Li, N.; Tang, B.; Wang, Y.; Feng, S. H.; Lv, L. Y.; Wang, C. et al. Operando identification of active species and intermediates on sulfide interfaced by Fe3O4 for ultrastable alkaline oxygen evolution at large current density. ACS Catal. 2022, 12, 4318–4326.

[47]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[48]

Zhang, L. Y.; Zheng, Y. J.; Wang, J. C.; Geng, Y.; Zhang, B.; He, J. J.; Xue, J. M.; Frauenheim, T.; Li, M. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small 2021, 17, 2006730.

[49]

Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal. B: Environ. 2019, 254, 186–193.

[50]

Huang, S. C.; Meng, Y. Y.; He, S. M.; Goswami, A.; Wu, Q. L.; Li, J. H.; Tong, S. F.; Asefa, T.; Wu, M. M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1606585.

[51]

Hu, Z. M.; Xiao, X.; Jin, H. Y.; Li, T. Q.; Chen, M.; Liang, Z.; Guo, Z. F.; Li, J.; Wan, J.; Huang, L. et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 2017, 8, 15630.

[52]

Yang, M.; Xie, J. Y.; Yu, W. L.; Cao, Y. N.; Dong, B.; Zhou, Y. N.; Wang, F. L.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Fe(Co)OOH dynamically stable interface based on self-sacrificial reconstruction for long-term electrochemical water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 17450–17458.

[53]

Zou, X. X.; Wu, Y. Y.; Liu, Y. P.; Liu, D. P.; Li, W.; Gu, L.; Liu, H.; Wang, P. W.; Sun, L.; Zhang, Y. In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 2018, 4, 1139–1152.

[54]

Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

[55]

Feng, C.; Wang, F. Z.; Liu, Z.; Nakabayashi, M.; Xiao, Y. Q.; Zeng, Q. G.; Fu, J.; Wu, Q. B.; Cui, C. H.; Han, Y. F. et al. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nat. Commun. 2021, 12, 5980.

[56]

Yang, J.; Zhu, G. X.; Liu, Y. J.; Xia, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712–4721.

File
12274_2022_5176_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 August 2022
Revised: 09 October 2022
Accepted: 10 October 2022
Published: 12 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52274308 and 52174283) and Postgraduate Innovation Engineering Project of China University of Petroleum (East China) (No. YCX2021134).

Return