Journal Home > Volume 16 , Issue 4

Localized surface plasmon resonance (LSPR) effects of nanoscale plasmonic metals/semiconductor composites have been extensively applied into visible light photocatalysis. However, Pt nanoparticles (NPs) with the visible LSPR absorption maxima have rarely been used as a photosensitizer to facilitate photocatalytic reactions, especially the photocatalytic overall water splitting (POWS) reaction, presumably because they feature weak light absorption. Herein, we present that the increased plasmonic absorption and local field enhancement can be achieved in the wide visible range by exploiting the simulated and experimental expressions of Pt nanocuboctahedra and Pt cuboctahedra-WO3 nanohybrids (Pt-WO3). First, monodisperse Pt cuboctahedra with different sizes, a hierarchical WO3 nanoarchitecture composed of radially patterned WO3 nanopillars, and Pt-WO3 were systematically synthesized. Subsequently, visible plasmonic Pt-WO3 photocatalysts were employed in the POWS tests and exhibited the significant activity enhancement in the visible light region. The apparent quantum efficiency (AQE) of greater than 7% within the range of visible light has been achieved for the optimal Pt-WO3.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced plasmonic absorption of Pt cuboctahedra-WO3 nanohybrids used as visible light photocatalysts for overall water splitting

Show Author's information Qiaoling ChenYiwei Tan( )
State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Localized surface plasmon resonance (LSPR) effects of nanoscale plasmonic metals/semiconductor composites have been extensively applied into visible light photocatalysis. However, Pt nanoparticles (NPs) with the visible LSPR absorption maxima have rarely been used as a photosensitizer to facilitate photocatalytic reactions, especially the photocatalytic overall water splitting (POWS) reaction, presumably because they feature weak light absorption. Herein, we present that the increased plasmonic absorption and local field enhancement can be achieved in the wide visible range by exploiting the simulated and experimental expressions of Pt nanocuboctahedra and Pt cuboctahedra-WO3 nanohybrids (Pt-WO3). First, monodisperse Pt cuboctahedra with different sizes, a hierarchical WO3 nanoarchitecture composed of radially patterned WO3 nanopillars, and Pt-WO3 were systematically synthesized. Subsequently, visible plasmonic Pt-WO3 photocatalysts were employed in the POWS tests and exhibited the significant activity enhancement in the visible light region. The apparent quantum efficiency (AQE) of greater than 7% within the range of visible light has been achieved for the optimal Pt-WO3.

Keywords: localized surface plasmon resonance, overall water splitting, plasmonic photocatalysis, WO3, plasmonic Pt nanoparticles

References(52)

[1]

Zhao, G. L.; Kozuka, H.; Yoko, T. Sol–gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 1996, 277, 147–154.

[2]

Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637.

[3]

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

[4]

Thomann, I.; Pinaud, B. A.; Chen, Z. B.; Clemens, B. M.; Jaramillo, T. F.; Brongersma, M. L. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 2011, 11, 3440–3446.

[5]

Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

[6]

Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458–465.

[7]

DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887–7891.

[8]

Melvin, A. A.; Illath, K.; Das, T.; Raja, T.; Bhattacharyya, S.; Gopinath, C. S. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces. Nanoscale 2015, 7, 13477–13488.

[9]

Valenti, M.; Jonsson, M. P.; Biskos, G.; Schmidt-Ott, A.; Smith, W. A. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891–17912.

[10]

Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117.

[11]

Li, K.; Hogan, N. J.; Kale, M. J.; Halas, N. J.; Nordlander, P.; Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett. 2017, 17, 3710–3717.

[12]

Liu, X. Q.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y. H.; Zhao, S. Q.; Li, Z.; Lin, Z. Q. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402–434.

[13]

Wu, N. Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696.

[14]

Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 2017, 12, 1000–1005.

[15]

Ezendam, S.; Herran, M.; Nan, L.; Gruber, C.; Kang, Y. C.; Gröbmeyer, F.; Lin, R.; Gargiulo, J.; Sousa-Castillo, A.; Cortés, E. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett. 2022, 7, 778–815.

[16]

Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251.

[17]

Tanaka, A.; Hashimoto, K.; Kominami, H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J. Am. Chem. Soc. 2014, 136, 586–589.

[18]

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

[19]
Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, 1985.
[20]

Creighton, J. A.; Eadon, D. G. Ultraviolet–visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 1991, 87, 3881–3891.

[21]

Manchon, D.; Lermé, J.; Zhang, T. P.; Mosset, A.; Jamois, C.; Bonnet, C.; Rye, J. M.; Belarouci, A.; Broyer, M.; Pellarin, M. Plasmonic coupling with most of the transition metals: A new family of broad band and near infrared nanoantennas. Nanoscale 2015, 7, 1181–1192.

[22]

Liu, X. E.; Wang, F. Y.; Wang, Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2012, 14, 7894–7911.

[23]

Pesci, F. M.; Cowan, A. J.; Alexander, B. D.; Durrant, J. R.; Klug, D. R. Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2011, 2, 1900–1903.

[24]

Zheng, J. Y.; Haider, Z.; Van, T. K.; Pawar, A. U.; Kang, M. J.; Kim, C. W.; Kang, Y. S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070–6093.

[25]

Liu, Y. W.; Liang, L.; Xiao, C.; Hua, X. M.; Li, Z.; Pan, B. C.; Xie, Y. Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Adv. Energy Mater. 2016, 6, 1600437.

[26]

Dong, P. Y.; Hou, G. H.; Xi, X. G.; Shao, R.; Dong, F. WO3-based photocatalysts: Morphology control, activity enhancement, and multifunctional applications. Environ. Sci. Nano 2017, 4, 539–557.

[27]

Corby, S.; Francàs, L.; Selim, S.; Sachs, M.; Blackman, C.; Kafizas, A.; Durrant, J. R. Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J. Am. Chem. Soc. 2018, 140, 16168–16177.

[28]

Ren, Y. M.; Xu, Q.; Zheng, X. L.; Fu, Y. Z.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Zhou, Y. C. Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3−x for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 2018, 231, 381–390.

[29]

Durán-Álvarez, J. C.; Del Angel, R.; Ramírez-Ortega, D.; Guerrero-Araque, D.; Zanella, R. An alternative method for the synthesis of functional Au/WO3 materials and their use in the photocatalytic production of hydrogen. Catal. Today 2020, 341, 49–58.

[30]

Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li, H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 2020, 67, 104287.

[31]

Bigall, N. C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008, 8, 4588–4592.

[32]

Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833–838.

[33]

Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nature Catal. 2018, 1, 756–763.

[34]

Wang, Q.; Nakabayashi, M.; Hisatomi, T.; Sun, S.; Akiyama, S.; Wang, Z.; Pan, Z. H.; Xiao, X.; Watanabe, T.; Yamada, T. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 2019, 18, 827–832.

[35]

Qi, Y.; Zhao, Y.; Gao, Y. Y.; Li, D.; Li, Z.; Zhang, F. X.; Li, C. Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%. Joule 2018, 2, 2393–2402.

[36]

Kageshima, Y.; Gomyo, Y.; Matsuoka, H.; Inuzuka, H.; Suzuki, H.; Abe, R.; Teshima, K.; Domen, K.; Nishikiori, H. Z-scheme overall water splitting using ZnxCd1−xSe particles coated with metal cyanoferrates as hydrogen evolution photocatalysts. ACS Catal. 2021, 11, 8004–8014.

[37]

Chen, S. S.; Vequizo, J. J. M.; Hisatomi, T.; Nakabayashi, M.; Lin, L. H.; Wang, Z.; Yamakata, A.; Shibata, N.; Takata, T.; Yamada, T. et al. Efficient photocatalytic hydrogen evolution on single-crystalline metal selenide particles with suitable cocatalysts. Chem. Sci. 2020, 11, 6436–6441.

[38]

Tanaka, A.; Nakanishi, K.; Hamada, R.; Hashimoto, K.; Kominami, H. Simultaneous and stoichiometric water oxidation and Cr(VI) reduction in aqueous suspensions of functionalized plasmonic photocatalyst Au/TiO2-Pt under irradiation of green light. ACS Catal. 2013, 3, 1886–1891.

[39]

Silva, C. G.; Juárez, R.; Marino, T.; Molinari, R.; García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 2011, 133, 595–602.

[40]

Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133–5146.

[41]

Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal. 2013, 3, 79–85.

[42]

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

[43]

Parkins, G. R.; Lawrence, W. E.; Christy, R. W. Intraband optical conductivity σ(ω, T) of Cu, Ag, and Au: Contribution from electron-electron scattering. Phys. Rev. B 1981, 23, 6408–6416.

[44]

Besteiro, L. V.; Yu, P.; Wang, Z. M.; Holleitner, A. W.; Hartland, G. V.; Wiederrecht, G. P.; Govorov, A. O. The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today 2019, 27, 120–145.

[45]

Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

[46]

Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107.

[47]

Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

[48]

Weaver, J. H. Optical properties of Rh, Pd, Ir, and Pt. Phys. Rev. B 1975, 11, 1416–1425.

[49]

Wang, H.; Tam, F.; Grady, N. K.; Halas, N. J. Cu nanoshells: Effects of interband transitions on the nanoparticle plasmon resonance. J. Phys. Chem. B 2005, 109, 18218–18222.

[50]

Zorić, I.; Zäch, M.; Kasemo, B.; Langhammer, C. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano 2011, 5, 2535–2546.

[51]

Gong, L. B.; Chu, Q. Y.; Liu, X. Y.; Tan, Y. W. Plasmonic platinum nanoparticles-tungsten oxide nanoarchitectures as visible light photocatalysts for highly efficient overall water splitting. J. Mater. Chem. A, 2022, 10, 21161–21176.

[52]

Lukowski, M. A.; Daniel, A. S.; English, C. R.; Meng, F.; Forticaux, A.; Hamers, R. J.; Jin, S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613.

Video
12274_2022_5175_MOESM2_ESM.mp4
File
12274_2022_5175_MOESM1_ESM.pdf (3.6 MB)
12274_2022_5175_MOESM3_ESM.pdf (538.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 August 2022
Revised: 09 October 2022
Accepted: 10 October 2022
Published: 15 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Six Talent Peaks Project in Jiangsu Province (No. JNHB-043) and the Research Fund of State Key Laboratory of Materials-Oriented Chemical Engineering (No. ZK201713).

Return