Journal Home > Volume 15 , Issue 12

menu
Full text
Outline
About this article

The Nano Research Young Innovators (NR45) Awards in nanocatalysis

Show Author's information Tierui Zhang1,2( )Shuangyin Wang3( )Ding Ma4( )
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, The National Supercomputing Center in Changsha, Hunan University, Changsha 410082, China
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
Published: 29 November 2022 Issue date: December 2022
References(33)
[1]

Gu, Z.; Dai, H. J. The inaugural Nano Research Young Innovators (NR45) Award in nanobiotechnology. Nano Res. 2018, 11, 4931–4935.

[2]

Wang, H. L.; Dai, H. J. The Nano Research Young Innovators (NR45) Awards in nanoenergy. Nano Res. 2019, 12, 1975–1977.

[3]

Duan, X. F.; Xiong, Q. H. The Nano Research Young Innovators (NR45) Awards in two-dimensional materials. Nano Res. 2021, 14, 1575–1582.

[4]

Qi, M. Y.; Wu, H. K.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light. Nano Res. 2022, 15, 9967–9975.

[5]

Du, S. W.; Zou, H.; Bao, Y. F.; Qi, Y.; Xin, X. S.; Wang, S. W.; Feng, Z. C.; Zhang, F. X. Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15−xNx as a visible-light-responsive photocatalyst for water oxidation. Nano Res. 2022, 15, 9976–9984.

[6]

Gao, M. M.; Zhang, T. X.; Ho, G. W. Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation. Nano Res. 2022, 15, 9985–10005.

[7]

Lin, Y. M.; Nie, R. F.; Li, Y. T.; Wu, X.; Yu, J. Q.; Xie, S. H.; Shen, Y. J.; Mao, S. J.; Chen, Y. Z.; Lu, D. et al. Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Res. 2022, 15, 10006–10013.

[8]

Jia, C. X.; Qin, H.; Zhen, C. Z.; Zhu, H. Z.; Yang, Y. Q.; Han, A. L.; Wang, L. Z.; Liu, G.; Cheng, H. M. Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution. Nano Res. 2022, 15, 10014–10020.

[9]
TangT.JiangZ.DengJ.NiuS.YaoZ. C.JiangW. J.ZhangL. J.HuJ. S. Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidationNano Res.202215100211002810.1007/s12274-022-5094-8

Tang, T.; Jiang, Z.; Deng, J.; Niu, S.; Yao, Z. C.; Jiang, W. J.; Zhang, L. J.; Hu, J. S. Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co3O4 arrays for high-rate water oxidation. Nano Res. 2022, 15, 10021–10028.

[10]

Wang, L. L.; Qin, X. T.; Sun, T.; Cai, X. B.; Peng, M.; Jia, Z. M.; Chen, X. W.; Wang, N.; Diao, J. Y.; Liu, H. Y. et al. Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Res. 2022, 15, 10029–10036.

[11]

Guo, Y. L.; Li, Y. Y.; Du, X. R.; Li, L.; Jiang, Q. K.; Qiao, B. T. Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene. Nano Res. 2022, 15, 10037–10043.

[12]

Wang, Z.; Luo, Q.; Mao, S. J.; Wang, C. P.; Xiong, J. Q.; Chen, Z. R.; Wang, Y. Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts. Nano Res. 2022, 15, 10044–10062.

[13]

Peng, J. X.; Yang, W. J.; Jia, Z. H.; Jiao, L.; Jiang, H. L. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 2022, 15, 10063–10069.

[14]

Hu, M. K.; Wang, N.; Ma, D. D.; Zhu, Q. L. Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Res. 2022, 15, 10070–10077.

[15]

Lin, C.; Liu, Y.; Kong, X. D.; Geng, Z. G.; Zeng, J. Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate. Nano Res. 2022, 15, 10078–10083.

[16]

Chen, R.; Gao, G. D.; Luo, J. S. A water-stable organolead iodide material for overall photocatalytic CO2 reduction. Nano Res. 2022, 15, 10084–10089.

[17]

Wang, Q.; Pan, Z. H. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Res. 2022, 15, 10090–10109.

[18]
ShaoS. X.CuiC. Q.TangZ. Y.LiG. D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse productsNano Res.202215101101013310.1007/s12274-022-4576-z

Shao, S. X.; Cui, C. Q.; Tang, Z. Y.; Li, G. D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Res. 2022, 15, 10110–10133.

[19]

Chen, F. P.; Zhao, B. H.; Sun, M. Y.; Liu, C. B.; Shi, Y. M.; Yu, Y. F.; Zhang, B. Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Res. 2022, 15, 10134–10141.

[20]

Hu, W. Y.; Li, Q. Y.; Xu, D.; Zhai, G. Y.; Zhang, S. N.; Li, D.; He, X. X.; Jia, J. P.; Chen, J. S.; Li, X. H. Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for Vis-NIR driven photocatalysis. Nano Res. 2022, 15, 10142–10147.

[21]

Xia, J. W.; Karjule, N.; Mark, G.; Volokh, M.; Chen, H. Q.; Shalom, M. Aromatic alcohols oxidation and hydrogen evolution over π-electron conjugated porous carbon nitride rods. Nano Res. 2022, 15, 10148–10157.

[22]

Mao, Y. S.; Wang, P. F.; Zhan, S. H. Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis. Nano Res. 2022, 15, 10158–10170.

[23]

Guan, X. J.; Zong, S. C.; Shen, S. H. Homojunction photocatalysts for water splitting. Nano Res. 2022, 15, 10171–10184.

[24]

Dong, L. Z.; Lu, Y. F.; Wang, R.; Zhou, J.; Zhang, Y.; Zhang, L.; Liu, J.; Li, S. L.; Lan, Y. Q. Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4. Nano Res. 2022, 15, 10185–10193.

[25]
ChenH.ZhangM. C.WangY. F.SunK.WangL. N.XieZ. B.ShenY. C.HanX. D.YangL.ZouX. X. Crystal phase engineering of electrocatalysts for energy conversionsNano Res.202215101941021710.1007/s12274-022-4605-y

Chen, H.; Zhang, M. C.; Wang, Y. F.; Sun, K.; Wang, L. N.; Xie, Z. B.; Shen, Y. C.; Han, X. D.; Yang, L.; Zou, X. X. Crystal phase engineering of electrocatalysts for energy conversions. Nano Res. 2022, 15, 10194–10217.

[26]

Hamo, E. R.; Rosen, B. A. Transition metal carbides as cathode supports for PEM fuel cells. Nano Res. 2022, 15, 10218–10233.

[27]

Santra, S.; Streibel, V.; Sharp, I. D. Emerging noble-metal-free Mo-based bifunctional catalysts for electrochemical energy conversion. Nano Res. 2022, 15, 10234–10267.

[28]

Li, J. H.; Zhang, Y. M.; Huang, Y. L.; Luo, B.; Jing, L.; Jing, D. W. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications-A review. Nano Res. 2022, 15, 10268–10291.

[29]

Sun, H. L.; Ou, W.; Sun, L. K.; Wang, B.; Su, C. L. Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano Res. 2022, 15, 10292–10315.

[30]

Cao, J.; Zhang, D. Z.; Xu, W. L. Recent progress in single-molecule fluorescence technology in nanocatalysis. Nano Res. 2022, 15, 10316–10327.

[31]

Ma, Y. Y.; Tian, Z. M.; Zhai, W. F.; Qu, Y. Q. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res. 2022, 15, 10328–10342.

[32]

Yang, H.; Hu, H. L.; Xia, C. F.; You, F.; Yao, J. L.; Jiang, X. L.; Xia, B. Y. Progress on nanostructured gel catalysts for oxygen electrocatalysis. Nano Res. 2022, 15, 10343–10356.

[33]

Lee, S.; Kim, H.; Ryoo, R.; Park, J. Y.; Choi, M. Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Res. 2022, 15, 10357–10365.

Publication history
Copyright
Rights and permissions

Publication history

Published: 29 November 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return