Journal Home > Volume 16 , Issue 4

ZnSeTe blue Cd-free quantum dot (QD) has emerged as a promising emitter for display applications due to its nontoxicity, tunable wavelength, and high efficiency. However, ZnSeTe-based quantum-dot light-emitting diodes (QLEDs) usually exhibit unsaturated emissions with broad spectra. Herein, a top-emitting structure, equipped with a transparent indium-zinc-oxide (IZO) top electrode and an IZO phase tuning layer (PTL), is developed to modulate the emission spectra and the efficiency of the devices. Saturated blue emissions with color coordinates beyond Recommendation ITU-R BT.709 (Rec.709) and near Rec.2020 standards are achieved. Moreover, benefiting from the improved outcoupling efficiency and the enhanced charge balance, the top-emitting QLED demonstrates a high external quantum efficiency of 15.14%, which is further improved to 18.16% by capping the devices with SiO2 nanospheres. Simulation analysis reveals that the surface plasmon polariton (SPP) losses are effectively reduced by applying a 100 nm PTL, leading to an outcoupling efficiency of 41.2% at a wavelength of 478 nm. Due to the simultaneously enhanced color saturation and efficiency, a high chroma efficiency (current efficiency/y coordinate in Commission Internationale de l'Eclairage chart) of 123 is obtained. The developed top-emitting architecture could enable the realization of efficient and saturated QLEDs for wide color gamut high-definition display applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

ZnSeTe blue top-emitting QLEDs with color saturation near Rec.2020 standards and efficiency over 18.16%

Show Author's information Cuixia YuanFengshou TianShuming Chen( )
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

ZnSeTe blue Cd-free quantum dot (QD) has emerged as a promising emitter for display applications due to its nontoxicity, tunable wavelength, and high efficiency. However, ZnSeTe-based quantum-dot light-emitting diodes (QLEDs) usually exhibit unsaturated emissions with broad spectra. Herein, a top-emitting structure, equipped with a transparent indium-zinc-oxide (IZO) top electrode and an IZO phase tuning layer (PTL), is developed to modulate the emission spectra and the efficiency of the devices. Saturated blue emissions with color coordinates beyond Recommendation ITU-R BT.709 (Rec.709) and near Rec.2020 standards are achieved. Moreover, benefiting from the improved outcoupling efficiency and the enhanced charge balance, the top-emitting QLED demonstrates a high external quantum efficiency of 15.14%, which is further improved to 18.16% by capping the devices with SiO2 nanospheres. Simulation analysis reveals that the surface plasmon polariton (SPP) losses are effectively reduced by applying a 100 nm PTL, leading to an outcoupling efficiency of 41.2% at a wavelength of 478 nm. Due to the simultaneously enhanced color saturation and efficiency, a high chroma efficiency (current efficiency/y coordinate in Commission Internationale de l'Eclairage chart) of 123 is obtained. The developed top-emitting architecture could enable the realization of efficient and saturated QLEDs for wide color gamut high-definition display applications.

Keywords: quantum-dot light-emitting diodes, Cd-free, top-emitting, statured blue emission

References(42)

[1]

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

[2]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[3]

Zhang, H.; Su, Q.; Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun. 2020, 11, 2826.

[4]

Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

[5]

Meng, T. T.; Zheng, Y. T.; Zhao, D. L.; Hu, H. L.; Zhu, Y. B.; Xu, Z. W.; Ju, S. M.; Jing, J. P.; Chen, X.; Gao, H. J. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photonics 2022, 16, 297–303.

[6]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[7]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[8]

Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M. Investigation on thermally induced efficiency roll-off: Toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 2019, 13, 11433–11442.

[9]

Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, 2006178.

[10]

Zhang, H.; Chen, S. M.; Sun, X. W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%. ACS Nano 2018, 12, 697–704.

[11]

Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

[12]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[13]

Yeom, J. E.; Shin, D. H.; Lampande, R.; Jung, Y. H.; Mude, N. N.; Park, J. H.; Kwon, J. H. Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep HOMO level hole transport layer. ACS Energy Lett. 2020, 5, 3868–3875.

[14]

Yu, P.; Shan, Y. L.; Cao, S.; Hu, Y. Q.; Li, Q. Y.; Zeng, R. S.; Zou, B. S.; Wang, Y. J.; Zhao, J. L. Inorganic solid phosphorus precursor of sodium phosphaethynolate for synthesis of highly luminescent InP-based quantum dots. ACS Energy Lett. 2021, 6, 2697–2703.

[15]

Chao, W. C.; Chiang, T. H.; Liu, Y. C.; Huang, Z. X.; Liao, C. C.; Chu, C. H.; Wang, C. H.; Tseng, H. W.; Hung, W. Y.; Chou, P. T. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2021, 2, 96.

[16]

Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.

[17]

Wu, Q. Q.; Cao, F.; Wang, S.; Wang, Y. M.; Sun, Z. J.; Feng, J. W.; Liu, Y.; Wang, L.; Cao, Q.; Li, Y. G. et al. Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes. Adv. Sci. 2022, 9, 2200959.

[18]

Yoon, S. Y.; Lee, Y. J.; Yang, H.; Jo, D. Y.; Kim, H. M.; Kim, Y.; Park, S. M.; Park, S.; Yang, H. Performance enhancement of InP quantum dot light-emitting diodes via a surface-functionalized ZnMgO electron transport layer. ACS Energy Lett. 2022, 7, 2247–2255.

[19]

Yu, P.; Cao, S.; Shan, Y. L.; Bi, Y. H.; Hu, Y. Q.; Zeng, R. S.; Zou, B. S.; Wang, Y. J.; Zhao, J. L. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 2022, 11, 162.

[20]

Wu, Z. H.; Liu, P.; Zhang, W. D.; Wang, K.; Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 2020, 5, 1095–1106.

[21]

Sugawara, M.; Choi, S. Y.; Wood, D. Ultra-high-definition television (Rec. ITU-R BT.2020): A generational leap in the evolution of television. IEEE Signal Process. Mag. 2014, 31, 170–174.

[22]

Lee, J. H.; Chen, C. H.; Lee, P. H.; Lin, H. Y.; Leung, M. K.; Chiu, T. L.; Lin, C. F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C 2019, 7, 5874–5888.

[23]

Shen, W.; Tang, H. Y.; Yang, X. L.; Cao, Z. L.; Cheng, T.; Wang, X. Y.; Tan, Z. A.; You, J. B.; Deng, Z. T. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. J. Mater. Chem. C 2017, 5, 8243–8249.

[24]

Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J. Phys. Chem. Lett. 2020, 11, 960–967.

[25]

Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

[26]

Cho, H.; Park, S.; Shin, H.; Kim, M.; Jang, H.; Park, J.; Yang, J. H.; Han, C. W.; Baek, J. H.; Jung, Y. S. et al. Highly efficient deep blue Cd-free quantum dot light-emitting diodes by a p-type doped emissive layer. Small 2020, 16, 2002109.

[27]

Ryowa, T.; Ishida, T.; Sakakibara, Y.; Kitano, K.; Ueda, M.; Izumi, M.; Ogura, Y.; Tanaka, M.; Nikata, S.; Watanabe, M. et al. High-efficiency quantum dot light-emitting diodes with blue cadmium-free quantum dots. J. Soc. Inf. Display 2020, 28, 401–409.

[28]

Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.

[29]

Yang, Z. W.; Wu, Q. Q.; Zhou, X. C.; Cao, F.; Yang, X. Y.; Zhang, J. H.; Li, W. W. A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale 2021, 13, 4562–4568.

[30]

Gao, M.; Tu, Y. F.; Tian, D. D.; Yang, H. W.; Fang, X. Y.; Zhang, F. J.; Shen, H. B.; Du, Z. L. Alleviating electron over-injection for efficient cadmium-free quantum dot light-emitting diodes toward deep-blue emission. ACS Photonics 2022, 9, 1400–1408.

[31]

Jang, E. P.; Han, C. Y.; Lim, S. W.; Jo, J. H.; Jo, D. Y.; Lee, S. H.; Yoon, S. Y.; Yang, H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 2019, 11, 46062–46069.

[32]

Bao, Z.; Jiang, Z. F.; Su, Q.; Chiu, H. D.; Yang, H.; Chen, S. M.; Chung, R. J.; Liu, R. S. ZnSe:Te/ZnSeS/ZnS nanocrystals: An access to cadmium-free pure-blue quantum-dot light-emitting diodes. Nanoscale 2020, 12, 11556–11561.

[33]

Han, C. Y.; Lee, S. H.; Song, S. W.; Yoon, S. Y.; Jo, J. H.; Jo, D. Y.; Kim, H. M.; Lee, B. J.; Kim, H. S.; Yang, H. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 2020, 5, 1568–1576.

[34]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[35]

Lee, S. H.; Song, S. W.; Yoon, S. Y.; Jo, D. Y.; Kim, S. K.; Kim, H. M.; Kim, Y.; Park, S. M.; Yang, H. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem. Eng. J. 2022, 429, 132464.

[36]

Baltramiejūnas, R.; Ryzhikov, V. D.; Gavryushin, V.; Kazlauskas, A.; Račiukaitis, G.; Silin, V. I.; Juodžbalis, D.; Stepankevičius, V. Luminescent and nonlinear spectroscopy of recombination centers in isovalent doped ZnSe: Te crystals. J. Lumin. 1992, 52, 71–81.

[37]

Furno, M.; Meerheim, R.; Hofmann, S.; Lüssem, B.; Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 2012, 85, 115205.

[38]

Liu, G. H.; Zhou, X.; Chen, S. M. Very bright and efficient microcavity top-emitting quantum dot light-emitting diodes with Ag electrodes. ACS Appl. Mater. Interfaces 2016, 8, 16768–16775.

[39]

Li, D.; Feng, J. W.; Zhu, Y. Q.; Lu, Z. G.; Pei, C.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. Enhanced efficiency of top-emission InP-based green quantum dot light-emitting diodes with optimized angular distribution. Nano Res. 2021, 14, 4243–4249.

[40]

Zang, C. X.; Liu, S. H.; Xu, M. X.; Wang, R. F.; Cao, C.; Zhu, Z. L.; Zhang, J. M.; Wang, H.; Zhang, L. T.; Xie, W. F. et al. Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light–matter coupling. Light Sci. Appl. 2021, 10, 116.

[41]

Chen, L. N.; Qin, Z. Y.; Chen, S. M. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities. Small Methods 2022, 6, 2101090.

[42]

Shi, L. L.; Chen, S. M. Over 32.5% efficient top-emitting quantum-dot LEDs with angular-independent emission. ACS Appl. Mater. Interfaces 2022, 14, 30039–30045.

File
12274_2022_5172_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 August 2022
Revised: 05 October 2022
Accepted: 06 October 2022
Published: 12 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62174075), Shenzhen Science and Technology Program (Nos. JCYJ20210324105400002 and JCYJ20220530113809022), and the Guangdong University Research Program (No. 2020ZDZX3062).

Return