Journal Home > Volume 16 , Issue 4

Strain engineering is a useful strategy for modifying the catalytic activity of electrocatalysts. However, in-situ visual characterization of the strain effect on the catalytic activity at nanoscale remains a huge challenge. Herein, we performed in-situ electrochemical scanning tunneling microscopy (EC-STM) imaging measurements at the local strained regions of extruded single-crystal molybdenum dioxide (MoO2) sheets with combination of current noise analysis (n-EC-STM). The intensity-enhanced noise was observed at the local strained region compared to the unstrained regions in the same frame, which reveals the positive effect of compressive strain on the hydrogen evolution reaction (HER) activity of MoO2 provided that the intensity of noise is positively correlated with catalytic HER Faradic current. Therefore, we clearly “see” the strain-induced enhancement of HER activity of MoO2 at nanoscale by means of noise visualization. This work extends the visual characterization of strain engineering in electrocatalysis and related fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ imaging of strain-induced enhancement of hydrogen evolution activity on the extruded MoO2 sheets

Show Author's information Mansheng LiaoQiaomei ZhuShuhua LiQiongqiong LiZiting TaoYongchun Fu( )
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

Abstract

Strain engineering is a useful strategy for modifying the catalytic activity of electrocatalysts. However, in-situ visual characterization of the strain effect on the catalytic activity at nanoscale remains a huge challenge. Herein, we performed in-situ electrochemical scanning tunneling microscopy (EC-STM) imaging measurements at the local strained regions of extruded single-crystal molybdenum dioxide (MoO2) sheets with combination of current noise analysis (n-EC-STM). The intensity-enhanced noise was observed at the local strained region compared to the unstrained regions in the same frame, which reveals the positive effect of compressive strain on the hydrogen evolution reaction (HER) activity of MoO2 provided that the intensity of noise is positively correlated with catalytic HER Faradic current. Therefore, we clearly “see” the strain-induced enhancement of HER activity of MoO2 at nanoscale by means of noise visualization. This work extends the visual characterization of strain engineering in electrocatalysis and related fields.

Keywords: strain engineering, visual characterization, electrochemical scanning tunneling microscope, noise enhancement

References(56)

[1]

Liu, Z.; Deng, Z.; He, G.; Wang, H. L.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155.

[2]

Chatenet, M.; Pollet, B. G.; Dekel, D. R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R. D.; Bazant, M. Z.; Eikerling, M.; Staffell, I. et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762.

[3]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[4]

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S. C.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

[5]

Lu, H. J.; Tournet, J.; Dastafkan, K.; Liu, Y.; Ng, Y. H.; Karuturi, S. K.; Zhao, C.; Yin, Z. Y. Noble-metal-free multicomponent nanointegration for sustainable energy conversion. Chem. Rev. 2021, 121, 10271–10366.

[6]

Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem. 2021, 133, 24817–24824.

[7]

Xiong, K.; Li, L.; Zhang, L.; Ding, W.; Peng, L. S.; Wang, Y.; Chen, S. G.; Tan, S. Y.; Wei, Z. D. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. J. Mater. Chem. A 2015, 3, 1863–1867.

[8]

Peng, L. S.; Liao, M. S.; Zheng, X. Q.; Nie, Y.; Zhang, L.; Wang, M. J.; Xiang, R.; Wang, J.; Li, L.; Wei, Z. D. Accelerated alkaline hydrogen evolution on M(OH)x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps. Chem. Sci. 2020, 11, 2487–2493.

[9]

Wang, J.; Liao, T.; Wei, Z. Z.; Sun, J. T.; Guo, J. J.; Sun, Z. Q. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. Small Methods 2021, 5, 2000988.

[10]

Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.

[11]

Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.

[12]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[13]

Zhang, T.; Liu, Y. P.; Yu, J.; Ye, Q. T.; Yang, L.; Li, Y.; Fan, H. J. Biaxially strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution. Adv. Mater. 2022, 34, 2202195.

[14]

Cheng, Z. H.; Xiao, Y. K.; Wu, W. P.; Zhang, X. Q.; Fu, Q.; Zhao, Y.; Qu, L. T. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021, 15, 11417–11427.

[15]

Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.

[16]

Maiti, S.; Maiti, K.; Curnan, M. T.; Kim, K.; Noh, K. J.; Han, J. W. Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy Environ. Sci. 2021, 14, 3717–3756.

[17]

Yang, X. B.; Wang, Y. Y.; Tong, X. L.; Yang, N. J. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261.

[18]

Dai, Z. H.; Liu, L. Q.; Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 2019, 31, 1805417.

[19]

Yang, S. X.; Chen, Y. J.; Jiang, C. B. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420.

[20]

Schmidt, T. O.; Ngoipala, A.; Arevalo, R. L.; Watzele, S. A.; Lipin, R.; Kluge, R. M.; Hou, S. J.; Haid, R. W.; Senyshyn, A.; Gubanova, E. L. et al. Elucidation of structure–activity relations in proton electroreduction at Pd surfaces: Theoretical and experimental study. Small 2022, 18, 2202410.

[21]

Fu, Y. C.; Rudnev, A. V.; Wiberg, G. K. H.; Arenz, M. Single graphene layer on Pt (111) creates confined electrochemical environment via selective ion transport. Angew. Chem., Int. Ed. 2017, 56, 12883–12887.

[22]

Yu, Z.; Xu, Y. X.; Su, J. Q.; Radjenovic, P. M.; Wang, Y. H.; Zheng, J. F.; Teng, B. T.; Shao, Y.; Zhou, X. S.; Li, J. F. Probing interfacial electronic effects on single-molecule adsorption geometry and electron transport at atomically flat surfaces. Angew. Chem., Int. Ed. 2021, 60, 15452–15458.

[23]

Zhan, G. L.; Cai, Z. F.; Strutyński, K.; Yu, L. H.; Herrmann, N.; Martínez-Abadía, M.; Melle-Franco, M.; Mateo-Alonso, A.; De Feyter, S. Observing polymerization in 2D dynamic covalent polymers. Nature 2022, 603, 835–840.

[24]

Feng, H. F.; Xu, X.; Du, Y.; Dou, S. X. Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. Electrochem. Energy Rev. 2021, 4, 249–268.

[25]

Wang, X.; Wang, Y. Q.; Feng, Y. C.; Wang, D.; Wan, L. J. Insights into electrocatalysis by scanning tunnelling microscopy. Chem. Soc. Rev. 2021, 50, 5832–5849.

[26]

Zheng, W. R.; Lee, L. Y. S. Observing electrocatalytic processes via in situ electrochemical scanning tunneling microscopy: Latest advances. Chem. Asian J. 2022, 17, e202200384.

[27]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[28]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[29]

Gu, J. Y.; Cai, Z. F.; Wang, D.; Wan, L. J. Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy. ACS Nano 2016, 10, 8746–8750.

[30]

Wang, X.; Cai, Z. F.; Wang, D.; Wan, L. J. Molecular evidence for the catalytic process of cobalt porphyrin catalyzed oxygen evolution reaction in alkaline solution. J. Am. Chem. Soc. 2019, 141, 7665–7669.

[31]

Wang, X.; Cai, Z. F.; Wang, Y. Q.; Feng, Y. C.; Yan, H. J.; Wang, D.; Wan, L. J. In situ scanning tunneling microscopy of cobalt-phthalocyanine-catalyzed CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 16098–16103.

[32]

Johnson, K. N.; Mazur, U.; Hipps, K. W. Single-molecule kinetic analysis of oxygenation of Co(II) porphyrin at the solution/solid interface. J. Phys. Chem. Lett. 2022, 13, 4918–4923.

[33]

Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.

[34]

Haid, R. W.; Kluge, R. M.; Liang, Y. C.; Bandarenka, A. S. In situ quantification of the local electrocatalytic activity via electrochemical scanning tunneling microscopy. Small Methods 2021, 5, 2000710.

[35]

Mitterreiter, E.; Liang, Y. C.; Golibrzuch, M.; McLaughlin, D.; Csoklich, C.; Bartl, J. D.; Holleitner, A.; Wurstbauer, U.; Bandarenka, A. S. In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions. npj 2D Mater. Appl. 2019, 3, 25.

[36]

Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H. S.; Durante, C.; Di Valentin, C.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 2021, 4, 850–859.

[37]

Lunardon, M.; Kosmala, T.; Durante, C.; Agnoli, S.; Granozzi, G. Atom-by-atom identification of catalytic active sites in operando conditions by quantitative noise detection. Joule 2022, 6, 617–635.

[38]

Tang, Y. J.; Gao, M. R.; Liu, C. H.; Li, S. L.; Jiang, H. L.; Lan, Y. Q.; Han, M.; Yu, S. H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12928–12932.

[39]

Jin, Y. S.; Wang, H. T.; Li, J. J.; Yue, X.; Han, Y. J.; Shen, P. K.; Cui, Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2016, 28, 3785–3790.

[40]

Guo, Y. H.; Zhao, Q. Y.; Zhan, Y. J.; Xu, X. L.; Xie, Y. Experimental study on an evaporation process to deposit MoO2 microflakes. Chem. Phys. Lett. 2017, 687, 14–18.

[41]

Li, X.; Yu, J. Y.; Jia, J.; Wang, A. Z.; Zhao, L. L.; Xiong, T. L.; Liu, H.; Zhou, W. J. Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 2019, 62, 127–135.

[42]

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM:A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

[43]

Zhang, Q. Q.; Li, X. S.; Ma, Q.; Zhang, Q.; Bai, H.; Yi, W. C.; Liu, J. Y.; Han, J.; Xi, G. C. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 2017, 8, 14903.

[44]

Zhang, C.; Zou, X. L.; Du, Z. G.; Gu, J. N.; Li, S. M.; Li, B.; Yang, S. B. Atomic layers of MoO2 with exposed high-energy (010) facets for efficient oxygen reduction. Small 2018, 14, 1703960.

[45]

Zhu, Y. Y.; Ji, X.; Cheng, S.; Chern, Z. Y.; Jia, J.; Yang, L. F.; Luo, H. W.; Yu, J. Y.; Peng, X. W.; Wang, J. et al. Fast energy storage in two-dimensional MoO2 enabled by uniform oriented tunnels. ACS Nano 2019, 13, 9091–9099.

[46]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[47]

Kluge, R. M.; Psaltis, E.; Haid, R. W.; Hou, S. J.; Schmidt, T. O.; Schneider, O.; Garlyyev, B.; Calle-Vallejo, F.; Bandarenka, A. S. Revealing the nature of active sites on Pt-Gd and Pt-Pr alloys during the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2022, 14, 19604–19613.

[48]

You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

[49]

Shen, J.; Tang, R.; Huang, J.; Wu, Y.; Chen, C.; Zhou, Q. Z.; Huang, Y.; Motkuri, R. K.; Jin, X.; Cao, H. B. Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coord. Chem. Rev. 2021, 429, 213649.

[50]

Rhuy, D.; Lee, Y.; Kim, J. Y.; Kim, C.; Kwon, Y.; Preston, D. J.; Kim, I. S.; Odom, T. W.; Kang, K.; Lee, D. et al. Ultraefficient electrocatalytic hydrogen evolution from strain-engineered, multilayer MoS2. Nano Lett. 2022, 22, 5742–5750.

[51]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[52]

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

[53]

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

[54]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[55]

Schnur, S.; Groß, A. Strain and coordination effects in the adsorption properties of early transition metals: A density-functional theory study. Phys. Rev. B 2010, 81, 033402.

[56]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

File
12274_2022_5170_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2022
Revised: 23 September 2022
Accepted: 09 October 2022
Published: 05 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the financial supports from the National Natural Science Foundation of China (No. 22072039) and the Fundamental Research Fund for the Central Universities (No. HNU-531118010220).

Return