Journal Home > Volume 16 , Issue 4

Electron-donating porphyrins (Por), electron-accepting phthalocyanines (Pcs), and reduced graphene oxide (RGO) were integrated into a multicomponent nanoconjugate (Por-RGO-Pc). The donor-π-acceptor nanoconjugate Por-RGO-Pc was characterized using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and ultraviolet–visible (UV–Vis) spectroscopy. Photoinduced cascading electron/charge transfer from Por to RGO and from RGO to Pc was established from fluorescence, electrochemical, and femtosecond transient absorption (fs-TA) spectroscopy studies. The increased distance between the electron donors and acceptors of the Por-RGO-Pc nanoconjugate compared to the parent materials and the intermediate RGO-Pc results in long-lived charge separation, and an enhancement in nonlinear optical (NLO) absorption (a large NLO coefficient of about 827.44 cm/GW) towards nanosecond laser irradiation at 532 nm.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cascading electron transfer and photophysics in a donor-π-acceptor graphene nanoconjugate

Show Author's information Lulu Fu1Hui Li1Yan Fang1Zihao Guan1Zhiyuan Wei1Naying Shan1Fang Liu1Yang Zhao1Mingfei Zhang1Zhipeng Huang1Mark G. Humphrey2Chi Zhang1( )
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

Abstract

Electron-donating porphyrins (Por), electron-accepting phthalocyanines (Pcs), and reduced graphene oxide (RGO) were integrated into a multicomponent nanoconjugate (Por-RGO-Pc). The donor-π-acceptor nanoconjugate Por-RGO-Pc was characterized using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and ultraviolet–visible (UV–Vis) spectroscopy. Photoinduced cascading electron/charge transfer from Por to RGO and from RGO to Pc was established from fluorescence, electrochemical, and femtosecond transient absorption (fs-TA) spectroscopy studies. The increased distance between the electron donors and acceptors of the Por-RGO-Pc nanoconjugate compared to the parent materials and the intermediate RGO-Pc results in long-lived charge separation, and an enhancement in nonlinear optical (NLO) absorption (a large NLO coefficient of about 827.44 cm/GW) towards nanosecond laser irradiation at 532 nm.

Keywords: graphene, nonlinear optics, nanoconjugate, donor-π-acceptor (D-π-A), cascading charge separation

References(59)

[1]

Novoselov, K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[3]

Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 44, 217–224.

[4]

Waissman, J.; Anderson, L. E.; Talanov, A. V.; Yan, Z. Y.; Shin, Y. J.; Najafabadi, D. H.; Rezaee, M.; Feng, X. W.; Nocera, D. G.; Taniguchi, T. et al. Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry. Nat. Nanotechnol. 2022, 17, 166–173.

[5]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[6]

Luo, B.; Fang, Y.; Wang, B.; Zhou, J. S.; Song, H. H.; Zhi, L. J. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226–5230.

[7]

Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; Hirsch, A.; Martín, N.; D’Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017, 46, 4464–4500.

[8]

Chen, L. P.; Wang, L. J.; Shuai, Z. G.; Beljonne, D. Energy level alignment and charge carrier mobility in noncovalently functionalized graphene. J. Phys. Chem. Lett. 2013, 4, 2158–2165.

[9]

Muruganathan, M.; Sun, J.; Imamura, T.; Mizuta, H. Electrically tunable van der Waals interaction in Graphene-molecule complex. Nano Lett. 2015, 15, 8176–8180.

[10]

Woomer, A. H.; Druffel, D. L.; Sundberg, J. D.; Pawlik, J. T.; Warren, S. C. Bonding in 2D donor–acceptor heterostructures. J. Am. Chem. Soc. 2019, 141, 10300–10308.

[11]

Chen, Y.; Bai, T.; Dong, N. N.; Fan, F.; Zhang, S. F.; Zhuang, X. D.; Sun, J.; Zhang, B.; Zhang, X. Y.; Wang, J. et al. Graphene and its derivatives for laser protection. Prog. Mater. Sci. 2016, 84, 118–157.

[12]
Fu, L. L.; Fang, Y.; Guan, Z. H.; Wei, Z. Y.; Yang, R.; Shan, N. Y.; Liu, F.; Zhao, Y.; Zhang,M. F.; Huang, Z. P. et al. Dramatic femto second nonlinear absorption at a strongly coupled porphyrin-graphene nanoconjugate. Nano Res., in press, https://doi.org/10.1007/s12274-022-5155-z.
[13]

Xu, T.; Zhao, S. J.; Lin, C. W.; Zheng, X. L.; Lan, M. H. Recent advances in nanomaterials for sonodynamic therapy. Nano Res. 2020, 13, 2898–2908.

[14]

Kim, H.; Solak, K.; Han, Y.; Cho, Y. W.; Koo, K. M.; Kim, C. D.; Luo, Z. T.; Son, H.; Kim, H. R.; Mavi, A. et al. Electrically controlled mRNA delivery using a polypyrrole-graphene oxide hybrid film to promote osteogenic differentiation of human mesenchymal stem cells. Nano Res. 2022, 15, 9253–9263.

[15]

Behura, S. K.; Wang, C.; Wen, Y.; Berry, V. Graphene-semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 2019, 13, 312–318.

[16]

Xu, H.; Zhang, L.; Ding, Z. C.; Hu, J. L.; Liu, J.; Liu, Y. C. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Res. 2018, 11, 4293–4301.

[17]

Gu, H. L.; Zhong, L. X.; Shi, G. S.; Li, J. Q.; Yu, K.; Li, J.; Zhang, S.; Zhu, C. Y.; Chen, S. H.; Yang, C. L. et al. Graphdiyne/graphene heterostructure: A universal 2d scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 8679–8688.

[18]

Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

[19]

Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.

[20]

Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev. 2018, 375, 489–513.

[21]

Stergiou, A.; Cantón-Vitoria, R.; Psarrou, M. N.; Economopoulos, S. P.; Tagmatarchis, N. Functionalized graphene and targeted applications-Highlighting the road from chemistry to applications. Prog. Mater Sci. 2020, 114, 100683.

[22]

Miraftab, R.; Ramezanzadeh, B.; Bahlakeh, G.; Mahdavian, M. An advanced approach for fabricating a reduced graphene oxide-AZO dye/polyurethane composite with enhanced ultraviolet (UV) shielding properties: Experimental and first-principles QM modeling. Chem. Eng. J. 2017, 321, 159–174.

[23]

Bottari, G.; de la Torre, G.; Torres, T. Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 2015, 48, 900–910.

[24]
Chen, Y.; EI-Khouly, M. E.; Doyle, J. J.; Lin, Y.; Liu, Y.; Notaras, E.; Blau, W. J.; O’Flaherty, S. M. Phthalocyanines and related compounds: Nonlinear optical response and photoinduced electron transfer process. In Handbook of Organic Electronics and Photonics. Nalwa, H. S., Ed.; American Scientific Publishers: USA, 2008; pp 151−181.
[25]

Wang, A. J.; Yu, W.; Xiao, Z. G.; Song, Y. L.; Long, L. L.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. A 1,3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push–pull motif. Nano Res. 2015, 8, 870–886.

[26]

Balapanuru, J.; Yang, J. X.; Xiao, S.; Bao, Q. L.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q. H.; Loh, K. P. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem., Int. Ed. 2010, 49, 6549–6553.

[27]

Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen. Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

[28]

Li, D. J.; Li, Q. H.; Wang, Z. R.; Ma, Z. Z.; Gu, Z. G.; Zhang, J. Interpenetrated metal-porphyrinic framework for enhanced nonlinear optical limiting. J. Am. Chem. Soc. 2021, 143, 17162–17169.

[29]

Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. Sequential energy and electron transfer in an artificial reaction center: Formation of a long-lived charge-separated state. J. Am. Chem. Soc. 2000, 122, 6535–6551.

[30]

Kirner, S. V.; Henkel, C.; Guldi, D. M.; Megiatto, J. D. Jr.; Schuster, D. I. Multistep energy and electron transfer processes in novel rotaxane donor–acceptor hybrids generating microsecond-lived charge separated states. Chem. Sci. 2015, 6, 7293–7304.

[31]

Kaur, R.; Possanza, F.; Limosani, F.; Bauroth, S.; Zanoni, R.; Clark, T.; Arrigoni, G.; Tagliatesta, P.; Guldi, D. M. Understanding and controlling short- and long-range electron/charge-transfer processes in electron donor–acceptor conjugates. J. Am. Chem. Soc. 2020, 142, 7898–7911.

[32]

Limosani, F.; Kaur, R.; Cataldo, A.; Bellucci, S.; Micciulla, F.; Zanoni, R.; Lembo, A.; Wang, B. Z.; Pizzoferrato, R.; Guldi, D. M. et al. Designing cascades of electron transfer processes in multicomponent graphene conjugates. Angew. Chem., Int. Ed. 2020, 59, 23706–23715.

[33]

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.

[34]

Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769.

[35]

Feng, W.; Liu, K.; Zang, J. Y.; Wang, G.; Miao, R.; Ding, L. P.; Liu, T. H.; Kong, J. L.; Fang, Y. Flexible and transparent oligothiophene-o-carborane-containing hybrid films for nonlinear optical limiting based on efficient two-photon absorption. ACS Appl. Mater. Interfaces 2021, 13, 28985–28995.

[36]

Rusanova, J.; Pilkington, M.; Decurtins, S. A novel fully conjugated phenanthroline-appended phthalocyanine: Synthesis and characterisation. Chem. Commun. 2002, 2236–2237.

[37]

Wibmer, L.; Lourenco, L. M. O.; Roth, A.; Katsukis, G.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Tomé, J. P. C.; Torres, T.; Guldi, D. M. Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines. Nanoscale 2015, 7, 5674–5682.

[38]

Chen, Y.; Araki, Y.; Fujitsuka, M.; Hanack, M.; Ito, O.; O’Flaherty, S. M.; Blau, W. J. Photophysical studies on axially substituted indium and gallium phthalocyanines upon UV–Vis laser irradiation. Solid State Commun. 2004, 131, 773–778.

[39]

O’Flaherty, S. M.; Hold, S. V.; Cook, M. J.; Torres, T.; Chen, Y.; Hanack, M.; Blau, W. J. Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics. Adv. Mater. 2003, 15, 19–32.

[40]

Chen, Y; Hanack, M; Araki, Y; Ito, O. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting. Chem. Soc. Rev. 2005, 34, 517–529.

[41]

Konarev, D. V.; Khasanov, S. S.; Lyubovskaya, R. N. Fullerene complexes with coordination assemblies of metalloporphyrins and metal phthalocyanines. Coord. Chem. Rev. 2014, 262, 16–36.

[42]

Fu, L. L.; Ye, J.; Li, H.; Huang, Z. P.; Humphrey, M. G.; Zhang, C. Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid. Nano Res. 2022, 15, 1355–1365.

[43]

Ragoussi, M. E.; Malig, J.; Katsukis, G.; Butz, B.; Spiecker, E.; de la Torre, G.; Torres, T.; Guldi, D. M. Linking photo- and redoxactive phthalocyanines covalently to graphene. Angew. Chem., Int. Ed. 2012, 51, 6421–6425.

[44]
Xu, H. J.; Cai, H. Z.; Cui, L. X.; Yu, L. M.; Gao, R.; Shi, C. Molecular modulating of cobalt phthalocyanines on amino functionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion. Nano Res., in press, https://doi.org/10.1007/s12274-022-4578-x.
[45]

Goswami, P.; Das, S.; Jain, P.; Chakma, B. Aptamer-graphene oxide for highly sensitive dual electrochemical detection of Plasmodium lactate dehydrogenase. Anal. Biochem. 2016, 514, 32–37.

[46]

Kotsyubynsky, V. O.; Boychuk, V. M.; Budzulyak, I. M.; Rachiy, B. I.; Hodlevska, M. A.; Kachmar, A. I.; Hodlevsky, M. A. Graphene oxide synthesis using modified Tour method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2021, 12, 035006.

[47]

Dasler, D.; Schäfer, R. A.; Minameyer, M. B.; Hitzenberger, J. F.; Hauke, F.; Drewello, T.; Hirsch, A. Direct covalent coupling of porphyrins to graphene. J. Am. Chem. Soc. 2017, 139, 11760–11765.

[48]
Ahmadianyazdi, A.; Nguyen, N. H. L.; Xu, J.; Berry, V. Glucose measurement via Raman spectroscopy of graphene: Principles and operation. Nano Res. 2022, 15, 8697–8704.
[49]

Guo, Z.; Du, F.; Ren, D. M.; Chen, Y. S.; Zheng, J. Y.; Liu, Z. B.; Tian, J. G. Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor–acceptor nanohybrid. J. Mater. Chem. 2006, 16, 3021–3030.

[50]

Tomaszewicz, E.; Kurzawa, M. Use of XPS method in determination of chemical environment and oxidation state of sulfur and silver atoms in Ag6S3O4 and Ag8S4O4 compounds. J. Mater. Sci. 2004, 39, 2183–2185.

[51]

Hoenig, E.; Strong, S. E.; Wang, M. Z.; Radhakrishnan, J. M.; Zaluzec, N. J.; Skinner, J. L.; Liu, C. Controlling the structure of MoS2 membranes via covalent functionalization with molecular spacers. Nano Lett. 2020, 20, 7844–7851.

[52]

Pellegrino, G.; Alberti, A.; Condorelli, G. G.; Giannazzo, F.; La Magna, A.; Paoletti, A. M.; Pennesi, G.; Rossi, G.; Zanotti, G. Study of the anchoring process of tethered unsymmetrical Zn-phthalocyanines on TiO2 nanostructured thin films. J. Phys. Chem. C 2013, 117, 11176–11185.

[53]

Xiao, Y. H.; Gu, Z. G.; Zhang, J. Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting. Sci. China Chem. 2020, 63, 1059–1065.

[54]

Tian, Y. B.; Vankova, N.; Weidler, P.; Kuc, A.; Heine, T.; Wöll, C.; Gu, Z. G.; Zhang, J. Oriented growth of in-oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 2021, 8, 2100548.

[55]

Xiao, Y. H.; Zhang, Y. X.; Zhai, R.; Gu, Z. G.; Zhang, J. Helical copper-porphyrinic framework nanoarrays for highly efficient CO2 electroreduction. Sci. China Mater. 2022, 65, 1269–1275.

[56]

Rauch, F.; Krebs, J.; Günther, J.; Friedrich, A.; Hähnel, M.; Krummenacher, I.; Braunschweig, H.; Finze, M.; Marder, T. B. Electronically driven regioselective iridium-catalyzed C-H borylation of donor-π-acceptor chromophores containing triarylboron acceptors. Chem. —Eur. J. 2020, 26, 10626–10633.

[57]

Arpacay, P.; Maity, P.; El-Zohry, A. M.; Meindl, A.; Akca, S.; Plunkett, S.; Senge, M. O.; Blau, W. J.; Mohammed, O. F. Controllable charge-transfer mechanism at push–pull porphyrin/nanocarbon interfaces. J. Phys. Chem. C 2019, 123, 14283–14291.

[58]

Wang, A. J.; Yu, W.; Huang, Z. P.; Zhou, F.; Song, J. B.; Song, Y. L.; Long, L. L.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, L. et al. Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 2016, 6, 23325.

[59]

Fu, L. L.; Humphrey, M. G.; Zhang, C. Covalent edge-functionalization of graphene oxide with porphyrins for highly efficient photoinduced electron/energy transfer and enhanced nonlinear optical performance. Nano Res. 2023, 16, 25–32.

File
12274_2022_5167_MOESM1_ESM.pdf (1.7 MB)
12274_2022_5167_MOESM2_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 September 2022
Revised: 29 September 2022
Accepted: 03 October 2022
Published: 04 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 51432006), the Ministry of Science and Technology of China for the International Science Linkages Program (No. 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (No. IRT14R23), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (No. B13025), and the Innovation Program of Shanghai Municipal Education Commission are gratefully acknowledged. M.G.H thanks the Australian Research Council (No. DP170100411) for support.

Return