AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiscale cellulose-based fireproof and thermal insulation gel materials with water-regulated forms

Chong-Han Yin1,§Huai-Bin Yang1,§Zi-Meng Han1,§Kun-Peng Yang1Zhang-Chi Ling1Qing-Fang Guan1( )Shu-Hong Yu1,2( )
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

§ Chong-Han Yin, Huai-Bin Yang, and Zi-Meng Han contributed equally to this work.

Show Author Information

Graphical Abstract

An adjustable multiform material strategy by water regulation is proposed to meet the needs of comprehensive applications and reduce environmental costs. Multiform gels are constructed based on multiscale cellulose fibers and hollow glass microspheres, with fireproofing and thermal insulation. This multiscale cellulose-based gel can change forms from dispersion to paste to dough by adjusting its water content, which can realize various construction forms, including paints, foams, and low-density boards according to different scenarios and corresponding needs.

Abstract

Different forms of construction materials (e.g., paints, foams, and boards) dramatically improve the quality of life. With the increasing environmental requirements for buildings, it is necessary to develop a comprehensive sustainable construction material that is flexible in application and exhibits excellent performance, such as fireproofing and thermal insulation. Herein, an adjustable multiform material strategy by water regulation is proposed to meet the needs of comprehensive applications and reduce environmental costs. Multiform gels are constructed based on multiscale cellulose fibers and hollow glass microspheres, with fireproofing and thermal insulation. Unlike traditional materials, this multiscale cellulose-based gel can change forms from dispersion to paste to dough by adjusting its water content, which can realize various construction forms, including paints, foams, and low-density boards according to different scenarios and corresponding needs.

Electronic Supplementary Material

Video
12274_2022_5166_MOESM1_ESM.mp4
12274_2022_5166_MOESM2_ESM.mp4
12274_2022_5166_MOESM3_ESM.mp4
12274_2022_5166_MOESM4_ESM.mp4
Download File(s)
12274_2022_5166_MOESM1_ESM.pdf (9.5 MB)

References

[1]

Nejat, P.; Jomehzadeh, F.; Taheri, M. M.; Gohari, M.; Abd Majid, M. Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustainable Energy Rev. 2015, 43, 843–862.

[2]

Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398.

[3]

Walker, R.; Pavia, S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build. Environ. 2015, 94, 155–165.

[4]

Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283.

[5]

Gupta, P.; Verma, C.; Maji, P. K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. J. Supercrit. Fluids 2019, 152, 104537.

[6]

Jelle, B. P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 2011, 43, 2549–2563.

[7]

Villasmil, W.; Fischer, L. J.; Worlitschek, J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustainable Energy Rev. 2019, 103, 71–84.

[8]

Li, K.; Skolrood, L. N.; Aytug, T.; Tekinalp, H.; Ozcan, S. Strong and tough cellulose nanofibrils composite films: Mechanism of synergetic effect of hydrogen bonds and ionic interactions. ACS Sustainable Chem. Eng. 2019, 7, 14341–14346.

[9]

Guan, Q. F.; Yang, H. B.; Yin, C. H.; Han, Z. M.; Yang, K. P.; Ling, Z. C.; Yu, S. H. Nacre-inspired sustainable coatings with remarkable fire-retardant and energy-saving cooling performance. ACS Mater. Lett. 2021, 3, 243–248.

[10]

Liu, B. W.; Cao, M.; Zhang, Y. Y.; Wang, Y. Z.; Zhao, H. B. Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Res. 2022, 15, 7797–7805.

[11]
Muthu, S. S. Environmental Implications of Recycling and Recycled Products; Springer: Singapore, 2015.
[12]

Vefago, L. H. M.; Avellaneda, J. Recycling concepts and the index of recyclability for building materials. Resour. Conserv. Recycl. 2013, 72, 127–135.

[13]

Li, X. Y.; Lu, K. Playing with defects in metals. Nat. Mater. 2017, 16, 700–701.

[14]

Huang, J. H.; Wu, P. Y. Kneading-inspired versatile design for biomimetic skins with a wide scope of customizable features. Adv. Sci. 2022, 9, 2200108.

[15]

Gama, N. V.; Ferreira, A.; Barros-Timmons, A. Polyurethane foams: Past, present, and future. Materials 2018, 11, 1841.

[16]

Chiou, K.; Byun, S.; Kim, J.; Huang, J. X. Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols. Proc. Natl. Acad. Sci. USA 2018, 115, 5703–5708.

[17]

Li, M. C.; Wu, Q. L.; Moon, R. J.; Hubbe, M. A.; Bortner, M. J. Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications. Adv. Mater. 2021, 33, 2006052.

[18]

Falk, R. H. Wood as a sustainable building material. For. Prod. J. 2009, 59, 6–12.

[19]

Mi, R. Y.; Chen, C. J.; Keplinger, T.; Pei, Y.; He, S. M.; Liu, D. P.; Li, J. G.; Dai, J. Q.; Hitz, E.; Yang, B. et al. Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 2020, 11, 3836.

[20]

Van der Lugt, P.; Van den Dobbelsteen, A. A. J. F.; Janssen, J. J. A. An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Constr. Build. Mater. 2006, 20, 648–656.

[21]

Rajput, D.; Bhagade, S. S.; Raut, S. P.; Ralegaonkar, R. V.; Mandavgane, S. A. Reuse of cotton and recycle paper mill waste as building material. Constr. Build. Mater. 2012, 34, 470–475.

[22]

Mutani, G.; Azzolino, C.; Macri, M.; Mancuso, S. Straw buildings: A good compromise between environmental sustainability and energy-economic savings. Appl. Sci. 2020, 10, 2858.

[23]
Bergaya, F.; Lagaly, G. Handbook of Clay Science; Elsevier: Amsterdam, 2013.
[24]

Low, P. F. Physical chemistry of clay-water interaction. Adv. Agron. 1961, 13, 269–327.

[25]

Lee, S.; Cho, S.; Kim, M.; Jin, G.; Jeong, U.; Jang, J. H. Highly moldable electrospun clay-like fluffy nanofibers for three-dimensional scaffolds. ACS Appl. Mater. Interfaces 2014, 6, 1082–1091.

[26]

Jiang, F.; Hsieh, Y. L. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J. Mater. Chem. A 2014, 2, 350–359.

[27]

Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.; Hägg, D.; Gatenholm, P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015, 16, 1489–1496.

[28]

Xie, X. L.; Liu, L. J.; Zhang, L. N.; Lu, A. Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation. Carbohydr. Polym. 2020, 229, 115467.

[29]

Chang, C. Y.; Duan, B.; Cai, J.; Zhang, L. N. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 2010, 46, 92–100.

[30]

Tayeb, A. H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose nanomaterials—Binding properties and applications: A review. Molecules 2018, 23, 2684.

[31]

Guan, Q. F.; Han, Z. M.; Yang, H. B.; Ling, Z. C.; Yu, S. H. Regenerated isotropic wood. Natl. Sci. Rev. 2021, 8, nwaa230.

[32]

Nechyporchuk, O.; Belgacem, M. N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crop. Prod. 2016, 93, 2–25.

[33]

Guan, Q. F.; Yang, H. B.; Han, Z. M.; Ling, Z. C.; Yu, S. H. An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 2020, 11, 5401.

[34]

Mattos, B. D.; Tardy, B. L.; Greca, L. G.; Kämäräinen, T.; Xiang, W.; Cusola, O.; Magalhães, W. L. E.; Rojas, O. J. Nanofibrillar networks enable universal assembly of superstructured particle constructs. Sci. Adv. 2020, 6, eaaz7328.

[35]

Gardner, D. J.; Oporto, G. S.; Mills, R.; Samir, M. A. S. A. Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol. 2008, 22, 545–567.

[36]

Isogai, A. Emerging nanocellulose technologies: Recent developments. Adv. Mater. 2021, 33, 2000630.

[37]

Yang, X. P.; Biswas, S. K.; Han, J. Q.; Tanpichai, S.; Li, M. C.; Chen, C. C.; Zhu, S. L.; Das, A. K.; Yano, H. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 2021, 33, 2002264.

[38]

Chu, Y. L.; Sun, Y.; Wu, W. B.; Xiao, H. N. Dispersion properties of nanocellulose: A review. Carbohydr. Polym. 2020, 250, 116892.

[39]

Guan, Q. F.; Yang, K. P.; Han, Z. M.; Yang, H. B.; Ling, Z. C.; Yin, C. H.; Yu, S. H. Sustainable multiscale high-haze transparent cellulose fiber film via a biomimetic approach. ACS Mater. Lett. 2022, 4, 87–92.

[40]

Budov, V. V. Hollow glass microspheres. Use, properties, and technology (review). Glass Ceram. 1994, 51, 230–235.

[41]

Park, S. J.; Jin, F. L.; Lee, C. Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins. Mater. Sci. Eng. A 2005, 402, 335–340.

[42]

Bercea, M.; Navard, P. Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 2000, 33, 6011–6016.

[43]

Hubbe, M. A.; Tayeb, P.; Joyce, M.; Tyagi, P.; Kehoe, M.; Dimic-Misic, K.; Pal, L. Rheology of nanocellulose-rich aqueous suspensions: A review. BioResources 2017, 12, 9556–9661.

[44]

Iotti, M.; Gregersen, Ø. W.; Moe, S.; Lenes, M. Rheological studies of microfibrillar cellulose water dispersions. J. Polym. Environ. 2011, 19, 137–145.

[45]

Dai, L.; Cheng, T.; Duan, C.; Zhao, W.; Zhang, W. P.; Zou, X. J.; Aspler, J.; Ni, Y. H. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydr. Polym. 2019, 203, 71–86.

[46]
Ashby, M. F. Materials Selection in Mechanical Design 4th ed.; Butterworth Heinemann: New York, 2010.
[47]

Abdou, A. A.; Budaiwi, I. M. Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures. J. Build. Phys. 2005, 29, 171–184.

[48]

Asadi, I.; Shafigh, P.; Hassan, Z. F. B. A.; Mahyuddin, N. B. Thermal conductivity of concrete—A review. J. Build. Eng. 2018, 20, 81–93.

[49]

Guo, W. D.; Lim, C. J.; Bi, X. T.; Sokhansanj, S.; Melin, S. Determination of effective thermal conductivity and specific heat capacity of wood pellets. Fuel 2013, 103, 347–355.

Nano Research
Pages 3379-3386
Cite this article:
Yin C-H, Yang H-B, Han Z-M, et al. Multiscale cellulose-based fireproof and thermal insulation gel materials with water-regulated forms. Nano Research, 2023, 16(2): 3379-3386. https://doi.org/10.1007/s12274-022-5166-9
Topics:

5049

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 September 2022
Revised: 02 October 2022
Accepted: 06 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return