Journal Home > Volume 16 , Issue 4

In this work, we revisited the single-step synthesis of CdE (E = S, Se, and Te) quantum dots (QDs). Powdered CdO and elemental chalcogen were directly used for heating-up synthesis. Firstly, the in situ dissolution of the solid precursors and related QD formation channels were preliminarily investigated. In general, QDs were generated from homogeneous reactions between dissolved cadmium and chalcogen precursors in bulk solution. We found that, during single-step synthesis, both the dissolution of CdO and selenium proceeded faster than their ex situ dissolution respectively. To explain this result, we proposed the existence of extra surface reaction channels for QD formation. That is, QDs could also be generated via on-surface reactions between the solid precursors and the dissolved counter precursors (as “ligands”). The happening of these extra surface reactions would increase the overall dissolution rate of CdO and selenium. Further, the circulation of oleic acid which is peculiar to such single-step synthesis should also partly account for the accelerated dissolution of CdO. Finally, by comparing with two-step synthesis using pre-dissolved CdO, we presented that such single-step synthesis was reliable in making uniform CdE QDs with good reproducibility. Our work reaffirmed the great potential of this single-step strategy in cost-effective synthesis of monodisperse QDs. Moreover, the ligand-promoted surface reaction channels would be applicable in solution-phase synthesis of metal chalcogenide nanocrystals from solid precursors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Revisiting the single-step synthesis of quantum dots: The hidden ligand-promoted surface reaction channels

Show Author's information Qiyu Yu1,2( )Jiaxin Song3Ke Li1,2Lili Xiao1,2
College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong 643000, China
College of Physics, Sichuan University, Chengdu 610065, China

Abstract

In this work, we revisited the single-step synthesis of CdE (E = S, Se, and Te) quantum dots (QDs). Powdered CdO and elemental chalcogen were directly used for heating-up synthesis. Firstly, the in situ dissolution of the solid precursors and related QD formation channels were preliminarily investigated. In general, QDs were generated from homogeneous reactions between dissolved cadmium and chalcogen precursors in bulk solution. We found that, during single-step synthesis, both the dissolution of CdO and selenium proceeded faster than their ex situ dissolution respectively. To explain this result, we proposed the existence of extra surface reaction channels for QD formation. That is, QDs could also be generated via on-surface reactions between the solid precursors and the dissolved counter precursors (as “ligands”). The happening of these extra surface reactions would increase the overall dissolution rate of CdO and selenium. Further, the circulation of oleic acid which is peculiar to such single-step synthesis should also partly account for the accelerated dissolution of CdO. Finally, by comparing with two-step synthesis using pre-dissolved CdO, we presented that such single-step synthesis was reliable in making uniform CdE QDs with good reproducibility. Our work reaffirmed the great potential of this single-step strategy in cost-effective synthesis of monodisperse QDs. Moreover, the ligand-promoted surface reaction channels would be applicable in solution-phase synthesis of metal chalcogenide nanocrystals from solid precursors.

Keywords: quantum dots, surface reaction, reaction channel, single-step synthesis, heating-up synthesis

References(65)

[1]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[2]

De Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[3]

Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.

[4]

Jalali, H. B.; Sadeghi, S.; Baylam, I.; Han, M.; Ow-Yang, C. W.; Sennaroglu, A.; Nizamoglu, S. Exciton recycling via InP quantum dot funnels for luminescent solar concentrators. Nano Res. 2021, 14, 1488–1494.

[5]

Zhang, X. S.; Chen, Y. J.; Lian, L. Y.; Zhang, Z. Z.; Liu, Y. X.; Song, L.; Geng, C.; Zhang, J. B.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.

[6]

Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

[7]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[8]

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

[9]

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

[10]

Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15, 4300–4308.

[11]

Deng, Z. T.; Cao, L.; Tang, F. Q.; Zou, B. S. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis. J. Phys. Chem. B 2005, 109, 16671–16675.

[12]

Jasieniak, J.; Bullen, C.; Van Embden, J.; Mulvaney, P. Phosphine-free synthesis of CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 20665–20668.

[13]

Cao, Y. C.; Wang, J. H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 2004, 126, 14336–14337.

[14]

Yang, Y. A.; Wu, H. M.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem., Int. Ed. 2005, 44, 6712–6715.

[15]

Chen, O.; Chen, X.; Yang, Y. A.; Lynch, J.; Wu, H. M.; Zhuang, J. Q.; Cao, Y. C. Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. Angew. Chem., Int. Ed. 2008, 47, 8638–8641.

[16]

Van Embden, J.; Chesman, A. S. R.; Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246–2285.

[17]

Steckel, J. S.; Yen, B. K. H.; Oertel, D. C.; Bawendi, M. G. On the mechanism of lead chalcogenide nanocrystal formation. J. Am. Chem. Soc. 2006, 128, 13032–13033.

[18]

Evans, C. M.; Evans, M. E.; Krauss, T. D. Mysteries of TOPSe revealed: Insights into quantum dot nucleation. J. Am. Chem. Soc. 2010, 132, 10973–10975.

[19]

Yu, K.; Liu, X. Y.; Zeng, Q.; Leek, D. M.; Ouyang, J. Y.; Whitmore, K. M.; Ripmeester, J. A.; Tao, Y.; Yang, M. L. Effect of tertiary and secondary phosphines on low-temperature formation of quantum dots. Angew. Chem., Int. Ed. 2013, 52, 4823–4828.

[20]

Yu, K.; Liu, X. Y.; Zeng, Q.; Yang, M. L.; Ouyang, J. Y.; Wang, X. Q.; Tao, Y. The formation mechanism of binary semiconductor nanomaterials: Shared by single-source and dual-source precursor approaches. Angew. Chem., Int. Ed. 2013, 52, 11034–11039.

[21]

Yu, K.; Liu, X. Y.; Qi, T.; Yang, H. Q.; Whitfield, D. M.; Y Chen, Q.; Huisman, E. J. C.; Hu, C. W. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals. Nat. Commun. 2016, 7, 12223.

[22]

Lai, R. C.; Pu, C. D.; Peng, X. G. On-surface reactions in the growth of high-quality CdSe nanocrystals in nonpolar solutions. J. Am. Chem. Soc. 2018, 140, 9174–9183.

[23]

Zhu, C. Q.; Chen, D. D.; Cao, W. C.; Lai, R. C.; Pu, C. D.; Li, J. Z.; Kong, X. Q.; Peng, X. G. Facet-dependent on-surface reactions in the growth of CdSe nanoplatelets. Angew. Chem., Int. Ed. 2019, 58, 17764–17770.

[24]

Abécassis, B.; Bouet, C.; Garnero, C.; Constantin, D.; Lequeux, N.; Ithurria, S.; Dubertret, B.; Pauw, B. R.; Pontoni, D. Real-time in situ probing of high-temperature quantum dots solution synthesis. Nano Lett. 2015, 15, 2620–2626.

[25]

Li, J. Z.; Wang, H. F.; Lin, L.; Fang, Q.; Peng, X. G. Quantitative identification of basic growth channels for formation of monodisperse nanocrystals. J. Am. Chem. Soc. 2018, 140, 5474–5484.

[26]

Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.

[27]

Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed. 2020, 59, 12013–12021.

[28]
Li, Y.; Rowell, N.; Luan, C. R.; Zhang, M.; Chen, X. Q.; Yu, K. A two-pathway model for the evolution of colloidal compound semiconductor quantum dots and magic-size clusters. Adv. Mater., in press, https://doi.org/10.1002/adma.202107940.
[29]

Shen, J.; Luan, C. R.; Rowell, N.; Li, Y.; Zhang, M.; Chen, X. Q.; Yu, K. Size matters: Steric hindrance of precursor molecules controlling the evolution of CdSe magic-size clusters and quantum dots. Nano Res. 2022, 15, 8664–8572.

[30]

Zhang, W. J.; Jin, C.; Yang, Y. J.; Zhong, X. H. Noninjection facile synthesis of gram-scale highly luminescent CdSe multipod nanocrystals. Inorg. Chem. 2012, 51, 531–535.

[31]

Zhang, W. J.; Zhang, H.; Feng, Y. Y.; Zhong, X. H. Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. ACS Nano 2012, 6, 11066–11073.

[32]

Zhang, W. J.; Zhang, H.; Zhong, X. H. Noninjection ultralarge-scaled synthesis of shape-tunable CdS nanocrystals as photocatalysts. RSC Adv. 2013, 3, 17477–17484.

[33]

Yordanov, G. G.; Yoshimura, H.; Dushkin, C. D. Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides. Colloid Polym. Sci. 2008, 286, 813–817.

[34]

Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B 2001, 105, 2260–2263.

[35]

Lu, W. G.; Fang, J. Y.; Stokes, K. L.; Lin, J. Shape evolution and self assembly of monodisperse PbTe nanocrystals. J. Am. Chem. Soc. 2004, 126, 11798–11799.

[36]

Sun, H. C.; Wang, F. D.; Buhro, W. E. Tellurium precursor for nanocrystal synthesis: Tris(dimethylamino)phosphine telluride. ACS Nano 2018, 12, 12393–12400.

[37]

Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se–octadecene suspension (Se–SUS). Nano Res. 2013, 6, 652–670.

[38]

Flamee, S.; Cirillo, M.; Abe, S.; De Nolf, K.; Gomes, R.; Aubert, T.; Hens, Z. Fast, high yield, and high solid loading synthesis of metal selenide nanocrystals. Chem. Mater. 2013, 25, 2476–2483.

[39]

Hu, X. F.; Li, J. Z.; Wang, Z.; Qian, X. D.; Zhu, C. Q.; Peng, X. G. Universal precursors dispersed in vaseline–octadecene gel for nanocrystal synthesis. Nano Res. 2022, 15, 4724–4731.

[40]

Wang, L.; Wang, J.; Chen, Y.; Zhong, H. H.; Jiang, Y. One-pot synthesis of CdS quantum dots and their quantum yields. Chem. J. Chin. Univ. 2011, 32, 1043–1048.

[41]

Li, Z.; Ji, Y. J.; Xie, R. G.; Grisham, S. Y.; Peng, X. G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J. Am. Chem. Soc. 2011, 133, 17248–17256.

[42]

García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H. T.; Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013, 25, 1233–1249.

[43]

Bullen, C.; Van Embden, J.; Jasieniak, J.; Cosgriff, J. E.; Mulder, R. J.; Rizzardo, E.; Gu, M.; Raston, C. L. High activity phosphine-free selenium precursor solution for semiconductor nanocrystal growth. Chem. Mater. 2010, 22, 4135–4143.

[44]

Furrer, G.; Stumm, W. The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim. Cosmochim. Ac. 1986, 50, 1847–1860.

[45]

Zinder, B.; Furrer, G.; Stumm, W. The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Ac. 1986, 50, 1861–1869.

[46]

Stumm, W.; Wollast, R. Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals. Rev. Geophys. 1990, 28, 53–69.

[47]

Lin, S. X.; Li, J. Z.; Pu, C. D.; Lei, H. R.; Zhu, M. Y.; Qin, H. Y.; Peng, X. G. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 2020, 13, 824–831.

[48]

Yu, K. CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth. Adv. Mater. 2012, 24, 1123–1132.

[49]

Su, M. Y.; Li, X. Y.; Zhang, J. T. Telluride semiconductor nanocrystals: Progress on their liquid-phase synthesis and applications. Rare Met. 2022, 41, 2527–2551.

[50]

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

[51]

McCarthy, C. L.; Webber, D. H.; Schueller, E. C.; Brutchey, R. L. Solution-phase conversion of bulk metal oxides to metal chalcogenides using a simple thiol-amine solvent mixture. Angew. Chem., Int. Ed. 2015, 54, 8378–8381.

[52]

Tian, Q. W.; Cui, Y.; Wang, G.; Pan, D. C. A robust and low-cost strategy to prepare Cu2ZnSnS4 precursor solution and its application in Cu2ZnSn(S,Se)4 solar cells. RSC Adv. 2015, 5, 4184–4190.

[53]

Shinato, K. W.; Huang, F. F.; Xue, Y. P.; Wen, L.; Jin, Y.; Mao, Y. J.; Luo, Y. Synergistic inhibitive effect of cysteine and iodide ions on corrosion behavior of copper in acidic sulfate solution. Rare Met. 2021, 40, 1317–1328.

[54]

Zhu, R. L.; Li, X. B.; Wei, C.; Huang, H.; Li, M. T.; Li, C. X.; Tang, F. L. Synergistic extraction of zinc from ammoniacal solutions using a β-diketone mixed with trialkylphosphine oxide. Rare Met. 2019, 38, 270–276.

[55]

Chan, E. M.; Xu, C. X.; Mao, A. W.; Han, G.; Owen, J. S.; Cohen, B. E.; Milliron, D. J. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 2010, 10, 1874–1885.

[56]

Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.

[57]

Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk, J.; Hickey, S. G. The hidden role of acetate in the PbSe nanocrystal synthesis. J. Am. Chem. Soc. 2006, 128, 6792–6793.

[58]

Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs. pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319.

[59]

Zhang, H. T.; Savitzky, B. H.; Yang, J.; Newman, J. T.; Perez, K. A.; Hyun, B. R.; Kourkoutis, L. F.; Hanrath, T.; Wise, F. W. Colloidal synthesis of PbS and PbS/CdS nanosheets using acetate-free precursors. Chem. Mater. 2016, 28, 127–134.

[60]

Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

[61]

Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

[62]

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

[63]

Abe, S.; Capek, R. K.; De Geyter, B.; Hens, Z. Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. ACS Nano 2013, 7, 943–949.

[64]

Hendricks, M. P.; Campos, M. P.; Cleveland, G. T.; Jen-La Plante, I.; Owen, J. S. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 2015, 348, 1226–1230.

[65]

Campos, M. P.; Hendricks, M. P.; Beecher, A. N.; Walravens, W.; Swain, R. A.; Cleveland, G. T.; Hens, Z.; Sfeir, M. Y.; Owen, J. S. A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit. J. Am. Chem. Soc. 2017, 139, 2296–2305.

File
12274_2022_5165_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 September 2022
Revised: 30 September 2022
Accepted: 03 October 2022
Published: 29 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the opening project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Nos. sklpme2019-4-38 and sklpme2019-4-36). L. X. is grateful to the National Natural Science Foundation of China (NSFC, No. 22005205). Q. Y. sincerely thanks Prof. Kui Yu and her group members for valuable help. Q. Y. also thanks Dr. Chao Chen for valuable help.

Return