Journal Home > Volume 16 , Issue 4

Regulating the coordination environment of transition-metal based materials in the axial direction with heteroatoms has shown great potential in boosting the oxygen reduction reaction (ORR). The coordination configuration and the regulation method are pivotal and elusive. Here, we report a combined strategy of matrix-activization and controlled-induction to modify the CoN4 site by axial coordination of Co–S (Co1N4-S1), which was validated by the aberration-corrected electron microscopy and X-ray absorption fine structure analysis. The optimal Co1N4-S1 exhibits an excellent alkaline ORR activity, according to the half-wave potential (0.897 V vs. reversible hydrogen electrode (RHE)), Tafel slope (24.67 mV/dec), and kinetic current density. Moreover, the Co1N4-S1 based Zn-air battery displays a high power density of 187.55 mW/cm2 and an outstanding charge–discharge cycling stability for 160 h, demonstrating the promising application potential. Theoretical calculations indicate that the better regulation of CoN4 on electronic structure and thus the highly efficient ORR performance can be achieved by axial Co–S.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Regulating electronic structure of CoN4 with axial Co–S for promoting oxygen reduction and Zn-air battery performance

Show Author's information Chang Chen1,§Zhiqiang Chen2,§Junxi Zhong3,§Xin Song4Dongfang Chen4Shoujie Liu5Weng-Chon Cheong6Jiazhan Li1Xin Tan1Chang He1Jiaqi Zhang1Di Liu1Qiuhua Yuan3( )Chen Chen1( )Qing Peng1( )Yadong Li1
Department of Chemistry, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing Institute of Aerospace Testing Technology, Beijing 100048, China
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
State Key Laboratory of Automtive Safety and Energy, Tsinghua University, Beijing 100084, China
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macau 999078, China

§ Chang Chen, Zhiqiang Chen, and Junxi Zhong contributed equally to this work.

Abstract

Regulating the coordination environment of transition-metal based materials in the axial direction with heteroatoms has shown great potential in boosting the oxygen reduction reaction (ORR). The coordination configuration and the regulation method are pivotal and elusive. Here, we report a combined strategy of matrix-activization and controlled-induction to modify the CoN4 site by axial coordination of Co–S (Co1N4-S1), which was validated by the aberration-corrected electron microscopy and X-ray absorption fine structure analysis. The optimal Co1N4-S1 exhibits an excellent alkaline ORR activity, according to the half-wave potential (0.897 V vs. reversible hydrogen electrode (RHE)), Tafel slope (24.67 mV/dec), and kinetic current density. Moreover, the Co1N4-S1 based Zn-air battery displays a high power density of 187.55 mW/cm2 and an outstanding charge–discharge cycling stability for 160 h, demonstrating the promising application potential. Theoretical calculations indicate that the better regulation of CoN4 on electronic structure and thus the highly efficient ORR performance can be achieved by axial Co–S.

Keywords: oxygen reduction, Zn-air battery, single-atom Co, electronic structure regulation, axial Co–S coordination

References(44)

[1]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[2]

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

[3]

Yang, H.; Wang, X.; Zheng, T.; Cuello, N. C.; Goenaga, G.; Zawodzinski, T. A.; Tian, H.; Wright, J. T.; Meulenberg, R. W.; Wang, X. K. et al. CrN-encapsulated hollow Cr-N-C capsules boosting oxygen reduction catalysis in PEMFC. CCS Chem. 2021, 3, 208–218.

[4]

Wang, Y.; Yuan, H.; Li, Y. F.; Chen, Z. F. Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: A computational study. Nanoscale 2015, 7, 11633–11641.

[5]

Zhang, R.; Warren, J. J. Controlling the oxygen reduction selectivity of asymmetric cobalt porphyrins by using local electrostatic interactions. J. Am. Chem. Soc. 2020, 142, 13426–13434.

[6]

Martin, D. J.; Wise, C. F.; Pegis, M. L.; Mayer, J. M. Developing scaling relationships for molecular electrocatalysis through studies of Fe-porphyrin-catalyzed O2 reduction. Acc. Chem. Res. 2020, 53, 1056–1065.

[7]

Wang, Y. H.; Mondal, B.; Stahl, S. S. Molecular cobalt catalysts for O2 reduction to H2O2: Benchmarking catalyst performance via rate-overpotential correlations. ACS Catal. 2020, 10, 12031–12039.

[8]

Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

[9]

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

[10]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[11]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[12]

Qin, C. L.; Luo, X. Y.; Xie, Q. Electronic structures and optoelectronic properties of silicon nanotubes doped by B, Al, and Ga. Chin. J. Inorg. Chem. 2020, 36, 2071–2079.

[13]

Gong, L. Y.; Zhang, H.; Wang, Y.; Luo, E. G.; Li, K.; Gao, L. Q.; Wang, Y. M.; Wu, Z. J.; Jin, Z.; Ge, J. J. et al. Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem., Int. Ed. 2020, 59, 13923–13928.

[14]

Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

[15]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[16]

Que, H. F.; Jiang, H. N.; Wang, X. G.; Zhai, P. B.; Meng, L. J.; Zhang, P.; Gong, Y. J. Utilization of the van der Waals gap of 2D materials. Acta Phys. -Chim. Sin. 2021, 37, 32–47.

[17]

Naveen, M. H.; Shim, K.; Hossain, M. S. A.; Kim, J. H.; Shim, Y. B. Template free preparation of heteroatoms doped carbon spheres with trace Fe for efficient oxygen reduction reaction and supercapacitor. Adv. Energy Mater. 2017, 7, 1602002.

[18]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[19]

Yao, W. Z.; Yao, J. B.; Zhang, X.; Ma, Y. H. Electronic structure and optical-absorption properties of C-, N-, and S-doped BiOCl: The first-principles calculations. Chin. J. Struct. Chem. 2019, 38, 509–523.

[20]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[21]

Tiwari, V. K.; Chen, Z.; Gao, F.; Gu, Z. Y.; Sun, X. L.; Ye, Z. B. Synthesis of ultra-small carbon nanospheres (< 50 nm) with uniform tunable sizes by a convenient catalytic emulsion polymerization strategy: Superior supercapacitive and sorption performance. J. Mater. Chem. A 2017, 5, 12131–12143.

[22]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[23]

Xia, S. G.; Zhang, Z.; Wu, J. N.; Wang, Y.; Sun, M. J.; Cui, Y.; Zhao, C. L.; Zhong, J. Y.; Cao, W.; Wang, H. P. et al. Cobalt carbide nanosheets as effective catalysts toward photothermal degradation of mustard-gas simulants under solar light. Appl. Catal. B: Environ. 2021, 284, 119703.

[24]

Wang, X.; Chen, Y.; Fang, Y. J.; Zhang, J. T.; Gao, S. Y.; Lou, X. W. Synthesis of cobalt sulfide multi-shelled nanoboxes with precisely controlled two to five shells for sodium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 2675–2679.

[25]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[26]

Tang, Y. N.; Zhang, H. W.; Shen, Z. G.; Zhao, M. Y.; Li, Y.; Dai, X. Q. The electronic and diffusion properties of metal adatoms on graphene sheets: A first-principles study. RSC Adv. 2017, 7, 33208–33218.

[27]

Chen, Z. Q.; Huang, A. J.; Yu, K.; Cui, T. T.; Zhuang, Z. W.; Liu, S. J.; Li, J. Z.; Tu, R. Y.; Sun, K. A.; Tan, X. et al. Fe1N4-O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 2021, 14, 3430–3437.

[28]

Li, G. D.; Qin, Y. J.; Wu, Y.; Pei, L.; Hu, Q.; Yang, H. P.; Zhang, Q. L.; Liu, J. H.; He, C. X. Nitrogen and sulfur dual-doped high-surface-area hollow carbon nanospheres for efficient CO2 reduction. Chin. J. Catal. 2020, 41, 830–838.

[29]

Kamiya, K.; Kamai, R.; Hashimoto, K.; Nakanishi, S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat. Commun. 2014, 5, 5040.

[30]

Wang, X. S.; Pan, Y. Y.; Ning, H.; Wang, H. M.; Guo, D. L.; Wang, W. H.; Yang, Z. X.; Zhao, Q. S.; Zhang, B. X.; Zheng, L. R. et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118630.

[31]

Wu, Y. H.; Chen, C. J.; Yan, X. P.; Sun, X. F.; Zhu, Q. G.; Li, P. S.; Li, Y. M.; Liu, S. J.; Ma, J. Y.; Huang, Y. Y. et al. Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew. Chem., Int. Ed. 2021, 60, 20803–20810.

[32]

Aballe, A.; Bethencourt, M.; Botana, F. J.; Marcos, M. Using wavelets transform in the analysis of electrochemical noise data. Electrochim. Acta 1999, 44, 4805–4816.

[33]

Han, X.; Zhang, T. Y.; Chen, W. X.; Dong, B.; Meng, G.; Zheng, L. R.; Yang, C.; Sun, X. M.; Zhuang, Z. B.; Wang, D. S. et al. Mn-N4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 2021, 11, 2002753.

[34]

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

[35]

Wang, T. Z.; Cao, X. J.; Qin, H. Y.; Shang, L.; Zheng, S. Y.; Fang, F.; Jiao, L. F. P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 21237–21241.

[36]

Service, R. F. Zinc aims to beat lithium batteries at storing energy. Science 2021, 372, 890–891.

[37]

Cheng, D.; Wang, Z.; Chen, C.; Zhou, K. B. Defect-enriched, nitrogen-doped graphitic carbon microspheres within 3D interconnected super-macropores as efficient oxygen electrocatalysts for breathing Zn-air battery. Carbon 2019, 145, 38–46.

[38]

Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.

[39]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

[40]

Liu, Q.; Wang, L.; Liu, X.; Yu, P.; Tian, C. G.; Fu, H. G. N-doped carbon-coated Co3O4 nanosheet array/carbon cloth for stable rechargeable Zn-air batteries. Sci. China Mater. 2019, 62, 624–632.

[41]

Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536–4563.

[42]

Hwang, S. J.; Kim, S. K.; Lee, J. G.; Lee, S. C.; Jang, J. H.; Kim, P.; Lim, T. H.; Sung, Y. E.; Yoo, S. J. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction. J. Am. Chem. Soc. 2012, 134, 19508–19511.

[43]

Hu, M. Y.; Li, S. N.; Zheng, S. S.; Liang, X. H.; Zheng, J. X.; Pan, F. Tuning single-atom catalysts of nitrogen-coordinated transition metals for optimizing oxygen evolution and reduction reactions. J. Phys. Chem. C 2020, 124, 13168–13176.

[44]

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

File
12274_2022_5164_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 August 2022
Revised: 05 October 2022
Accepted: 07 October 2022
Published: 29 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFF0500503), the National Natural Science Foundation of China (Nos. 22275109, 21971135, 21925202, 21872076, and 21471102), the Beijing Municipal Natural Science Foundation (No. 2214060), the China Postdoctoral Science Foundation (No. 2020M680508), and Shenzhen Basic Research Foundation (No. JCYJ20190808110613626). We thank the BL14W1 in 1W1B station in Beijing Synchrotron Radiation Facility for XAS measurements. We acknowledge the support of Analysis Center of Tsinghua University for XPS measurements. We thank the Institute of Physics CAS for AC-STEM measurements.

Return