AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anion-tuned nickel chalcogenides electrocatalysts for efficient 2e ORR towards H2O2 production in acidic media

Qingjia Sun1Guanxing Xu1Bingyan Xiong1Lisong Chen1,2( )Jianlin Shi3( )
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
Institute of Eco-Chongming, Shanghai 202162, China
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Show Author Information

Graphical Abstract

In this work, NiSe2 has been developed as a novel and high-performance 2e oxygen reduction reaction (2e ORR) electrocatalyst in acidic media, and the critical role of anions in electrocatalyst has been proposed.

Abstract

Electrocatalytic 2e oxygen reduction reaction (2e ORR) is a promising approach to producing H2O2 at ambient temperature and pressure especially in acidic media, which, however, is hindered by the high cost of precious metal-based electrocatalysts. Hence, the development of efficient earth-abundant electrocatalysts and reaction mechanism exploration for H2O2 production by 2e ORR in acidic solution are critically important but remain challenging at present. In this work, NiSe2 has been developed as a novel and high-performance 2e ORR electrocatalyst in acidic media, moreover, using nickel chalcogenides as the models, the influence of different anion species (Se22−, S22−, and O2−) on 2e ORR electrocatalytic performance of the catalysts has been investigated. The synthesized NiSe2 exhibits outstanding 2e ORR performance of high selectivity (90%) and long-term durability (12 h). The maximum H2O2 concentration of NiSe2 reaches 988 ppm, which is the highest among all the reported transition metal chalcogenides. This work demonstrates a novel point of view in anion tuning for designing high-efficiency transition-metal-based electrocatalysts for 2e ORR.

Electronic Supplementary Material

Download File(s)
12274_2022_5160_MOESM1_ESM.pdf (2.3 MB)
12274_2022_5160_MOESM2_ESM.pdf (1.4 MB)

References

[1]

Tang, J. Y.; Zhao, T. S.; Solanki, D.; Miao, X. B.; Zhou, W. G.; Hu, S. Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule 2021, 5, 1432–1461.

[2]

Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

[3]

Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 2020, 30, 2003321.

[4]

Han, G. H.; Lee, S. H.; Hwang, S. Y.; Lee, K. Y. Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 2021, 11, 2003121.

[5]

Pang, Y. Y.; Xie, H.; Sun, Y.; Titirici, M. M.; Chai, G. L. Electrochemical oxygen reduction for H2O2 production: Catalysts, pH effects and mechanisms. J. Mater. Chem. A 2020, 8, 24996–25016.

[6]

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

[7]

Zhang, X. D.; Zeng, Y. M.; Shi, W. Y.; Tao, Z.; Liao, J. J.; Ai, C. Z.; Si, H. W.; Wang, Z. P.; Fisher, A. C.; Lin, S. W. S-scheme heterojunction of core–shell biphase (1T-2H)-MoSe2/TiO2 nanorod arrays for enhanced photoelectrocatalytic production of hydrogen peroxide. Chem. Eng. J. 2022, 429, 131312.

[8]

Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

[9]

Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

[10]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[11]

Wang, Z.; Li, Q. K.; Zhang, C. H.; Cheng, Z. H.; Chen, W. Y.; McHugh, E. A.; Carter, R. A.; Yakobson, B. I.; Tour, J. M. Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 2021, 11, 2454–2459.

[12]

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

[13]

Yang, Q. H.; Xu, W. W.; Gong, S.; Zheng, G. K.; Tian, Z. Q.; Wen, Y. J.; Peng, L. M.; Zhang, L. J.; Lu, Z. Y.; Chen, L. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 2020, 11, 5478.

[14]

Zhang, F. F.; Zhu, Y. L.; Tang, C.; Chen, Y.; Qian, B. B.; Hu, Z. W.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A. et al. High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 2022, 32, 2110224.

[15]

Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dinca, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.

[16]

Wang, M. J.; Dong, X.; Meng, Z. D.; Hu, Z. W.; Lin, Y. G.; Peng, C. K.; Wang, H. S.; Pao, C. W.; Ding, S. Y.; Li, Y. Y. et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2021, 60, 11190–11195.

[17]

Liu, C.; Li, H.; Chen, J. S.; Yu, Z. X.; Ru, Q.; Li, S. Z.; Henkelman, G.; Wei, L.; Chen, Y. 3d transition-metal-mediated columbite nanocatalysts for decentralized electrosynthesis of hydrogen peroxide. Small 2021, 17, 2007249.

[18]

Gao, R. J.; Pan, L.; Li, Z. W.; Shi, C. X.; Yao, Y. D.; Zhang, X. W.; Zou, J. J. Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 2020, 30, 1910539.

[19]

Gao, J. J.; Liu, B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Materials Lett. 2020, 2, 1008–1024.

[20]

Zhang, J. Y.; Xia, C.; Wang, H. F.; Tang, C. Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 2022, 67, 432–450.

[21]

Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

[22]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[23]

Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C. C.; Jiang, L.; Carroll, D. L. et al. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 2020, 11, 3928.

[24]

Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

[25]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[26]

Xu, J. Y.; Wei, X. K.; Costa, J. D.; Lado, J. L.; Owens-Baird, B.; Goncalves, L. P. L.; Fernandes, S. P. S.; Heggen, M.; Petrovykh, D. Y.; Dunin-Borkowski, R. E. et al. Interface engineering in nanostructured nickel phosphide catalyst for efficient and stable water oxidation. ACS Catal. 2017, 7, 5450–5455.

[27]

Masa, J.; Barwe, S.; Andronescu, C.; Sinev, I.; Ruff, A.; Jayaramulu, K.; Elumeeva, K.; Konkena, B.; Cuenya, B. R.; Schuhmann, W. Low overpotential water splitting using cobalt-cobalt phosphide nanoparticles supported on nickel foam. ACS Energy Lett. 2016, 1, 1192–1198.

[28]

Zhou, Z.; Kong, Y.; Tan, H.; Huang, Q. W.; Wang, C.; Pei, Z. X.; Wang, H. Z.; Liu, Y. Y.; Wang, Y. H.; Li, S. et al. Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 2022, 34, 2106541.

[29]

Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Yan, T.; Liu, X.; Rao, Y.; Liao, P. L.; Cao, Z.; Sun, Y. J. Interfacial sites between cobalt nitride and cobalt act as bifunctional catalysts for hydrogen electrochemistry. ACS Energy Lett. 2019, 4, 1594–1601.

[30]

Dai, Z. F.; Geng, H. B.; Wang, J.; Luo, Y. B.; Li, B.; Zong, Y.; Yang, J.; Guo, Y. Y.; Zheng, Y.; Wang, X. et al. Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 2017, 11, 11031–11040.

[31]

Sun, Y.; Wu, J.; Zhang, Z.; Liao, Q. L.; Zhang, S. C.; Wang, X.; Xie, Y.; Ma, K. K.; Kang, Z.; Zhang, Y. Phase reconfiguration of multivalent nickel sulfides in hydrogen evolution. Energy Environ. Sci. 2022, 15, 633–644.

[32]

Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

[33]

Long, X.; Li, G. X.; Wang, Z. L.; Zhu, H. Y.; Zhang, T.; Xiao, S.; Guo, W. Y.; Yang, S. H. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 2015, 137, 11900–11903.

[34]

Zhang, X. L.; Hu, S. J.; Zheng, Y. R.; Wu, R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Gu, C.; Yu, X. X.; Zheng, X. S. et al. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 2019, 10, 5338.

[35]

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

[36]

Wang, M. J.; Zhang, N.; Feng, Y. G.; Hu, Z. W.; Shao, Q.; Huang, X. Q. Partially pyrolyzed binary metal-organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis. Angew. Chem., Int. Ed. 2020, 59, 14373–14377.

[37]

Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

[38]

Liang, J.; Wang, Y. Y.; Liu, Q.; Luo, Y. L.; Li, T. S.; Zhao, H. T.; Lu, S. Y.; Zhang, F.; Asiri, A. M.; Liu, F. G. et al. Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J. Mater. Chem. A 2021, 9, 6117–6122.

[39]

Ross, R. D.; Sheng, H. Y.; Parihar, A.; Huang, J. Z.; Jin, S. Compositionally tuned trimetallic thiospinel catalysts for enhanced electrosynthesis of hydrogen peroxide and built-in hydroxyl radical generation. ACS Catal. 2021, 11, 12643–12650.

[40]

Xia, F.; Li, B. M.; Liu, Y. Q.; Liu, Y. Z.; Gao, S. Y.; Lu, K.; Kaelin, J.; Wang, R. Y.; Marks, T. J.; Cheng, Y. W. Carbon free and noble metal free Ni2Mo6S8 electrocatalyst for selective electrosynthesis of H2O2. Adv. Funct. Mater. 2021, 31, 2104716.

[41]

Ji, Y.; Liu, Y. D.; Zhang, B. W.; Xu, Z. F.; Qi, X.; Xu, X.; Ren, L.; Du, Y.; Zhong, J. X.; Dou, S. X. Morphology engineering of atomic layer defect-rich CoSe2 nanosheets for highly selective electrosynthesis of hydrogen peroxide. J. Mater. Chem. A 2021, 9, 21340–21346.

[42]

Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

[43]

Sheng, H. Y.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J. Z.; Song, B.; Schmidt, J. R.; Jin, S. Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 2020, 13, 4189–4203.

[44]

Zhang, X. L.; Su, X. Z.; Zheng, Y. R.; Hu, S. J.; Shi, L.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Wu, Z. Z.; Qin, S. et al. Strongly coupled cobalt diselenide monolayers for selective electrocatalytic oxygen reduction to H2O2 under acidic conditions. Angew. Chem., Int. Ed. 2021, 60, 26922–26931.

[45]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: An efficient catalyst for H2O2 electrosynthesis in acidic media. J. Mater. Chem. A 2021, 9, 21703–21707.

[46]

Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res 2022, 15, 304–309.

[47]

Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Sun, J. Y.; Zhu, Z.; He, R.; Bao, J. M.; Goddard, W. A.; Chen, S.; Ren, Z. F. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy Environ. Sci. 2017, 10, 1487–1492.

[48]

Gill, T. M.; Zheng, X. L. Comparing methods for quantifying electrochemically accumulated H2O2. Chem. Mater. 2020, 32, 6285–6294.

[49]

Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal., B: Environ. 2020, 262, 118245.

[50]

Wang, T. T.; Guo, X. S.; Zhang, J. Y.; Xiao, W.; Xi, P. X.; Peng, S. L.; Gao, D. Q. Electronic structure modulation of NiS2 by transition metal doping for accelerating the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 4971–4976.

[51]

Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal., B: Environ. 2020, 276, 119165.

[52]

Boppella, R.; Tan, J.; Yun, J.; Manorama, S. V.; Moon, J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord. Chem. Rev. 2021, 427, 213552.

[53]

Back, S.; Na, J.; Ulissi, Z. W. Efficient discovery of active, selective, and stable catalysts for electrochemical H2O2 synthesis through active motif screening. ACS Catal. 2021, 11, 2483–2491.

[54]

Choi, C. H.; Kwon, H. C.; Yook, S.; Shin, H.; Kim, H.; Choi, M. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 2014, 118, 30063–30070.

Nano Research
Pages 4729-4735
Cite this article:
Sun Q, Xu G, Xiong B, et al. Anion-tuned nickel chalcogenides electrocatalysts for efficient 2e ORR towards H2O2 production in acidic media. Nano Research, 2023, 16(4): 4729-4735. https://doi.org/10.1007/s12274-022-5160-2
Topics:

5002

Views

18

Crossref

21

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 27 August 2022
Revised: 28 September 2022
Accepted: 07 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return