Journal Home > Volume 16 , Issue 2

Spin-based interdisciplinary research has attracted considerable attention, and various applications in magnetic memory, quantum science, and precision measuring technology have been reported. In this study, we induced a fluorescence property in a spin-active molecule by supramolecular assembly and realized a synergistic modulation of its spin and fluorescence properties. A Saturn-shaped supramolecular complex was synthesized using a spin-active metallofullerene Sc3C2@C80 with a fluorescent nanohoop of tetra-benzothiadiazole-based [12]cycloparaphenylene (TB[12]CPP), and its spin and fluorescence properties were comprehensively investigated. Temperature-dependent electron paramagnetic resonance (EPR) spectroscopy and fluorescence analyses were conducted. Synchronous changes in the EPR signals and fluorescence peaks were discovered in the temperature range of 170–290 K. Based on nuclear magnetic resonance observations and theoretical calculations, a temperature-dependent host–guest interaction between Sc3C2@C80 and a nanohoop was demonstrated, which explained the synchronous changes in the EPR signals and fluorescence peaks for Sc3C2@C80⊂TB[12]CPP. The application of Sc3C2@C80 as a molecular spin system to probe the host–guest interaction was also evaluated. These results show that the supramolecular assembly can be used to design advanced spin systems coupled with optical and magnetic behaviors based on paramagnetic and luminescent molecules.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synergistic modulation of spin and fluorescence signals in a nano-Saturn assembled by a metallofullerene and cycloparaphenylene nanohoop

Show Author's information Jie Zhang1,3Zhenlin Qiu2Chong Zhao4Yuxi Lu1,3Wang Li1,3Linshan Liu1Chunru Wang1Yuanzhi Tan2Taishan Wang1( )
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Pharmacy, Guizhou Medical University, Guiyang 550025, China

Abstract

Spin-based interdisciplinary research has attracted considerable attention, and various applications in magnetic memory, quantum science, and precision measuring technology have been reported. In this study, we induced a fluorescence property in a spin-active molecule by supramolecular assembly and realized a synergistic modulation of its spin and fluorescence properties. A Saturn-shaped supramolecular complex was synthesized using a spin-active metallofullerene Sc3C2@C80 with a fluorescent nanohoop of tetra-benzothiadiazole-based [12]cycloparaphenylene (TB[12]CPP), and its spin and fluorescence properties were comprehensively investigated. Temperature-dependent electron paramagnetic resonance (EPR) spectroscopy and fluorescence analyses were conducted. Synchronous changes in the EPR signals and fluorescence peaks were discovered in the temperature range of 170–290 K. Based on nuclear magnetic resonance observations and theoretical calculations, a temperature-dependent host–guest interaction between Sc3C2@C80 and a nanohoop was demonstrated, which explained the synchronous changes in the EPR signals and fluorescence peaks for Sc3C2@C80⊂TB[12]CPP. The application of Sc3C2@C80 as a molecular spin system to probe the host–guest interaction was also evaluated. These results show that the supramolecular assembly can be used to design advanced spin systems coupled with optical and magnetic behaviors based on paramagnetic and luminescent molecules.

Keywords: fluorescence, metallofullerene, electron spin, host–guest interaction, nanohoop

References(50)

[1]

Ma, Y. J.; Hu, J. X.; Han, S. D.; Pan, J.; Li, J. H.; Wang, G. M. Manipulating on/off single-molecule magnet behavior in a Dy(III)-based photochromic complex. J. Am. Chem. Soc. 2020, 142, 2682–2689.

[2]

Kawata, S.; Kawata, Y. Three-dimensional optical data storage using photochromic materials. Chem. Rev. 2000, 100, 1777–1788.

[3]

Simão, C.; Mas-Torrent, M.; Crivillers, N.; Lloveras, V.; Artés, J. M.; Gorostiza, P.; Veciana, J.; Rovira, C. A robust molecular platform for non-volatile memory devices with optical and magnetic responses. Nat. Chem. 2011, 3, 359–364.

[4]

Bourgeois, E.; Jarmola, A.; Siyushev, P.; Gulka, M.; Hruby, J.; Jelezko, F.; Budker, D.; Nesladek, M. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat. Commun. 2015, 6, 8577.

[5]

Jelezko, F.; Wrachtrup, J. Single defect centres in diamond: A review. Phys. Status Solidi (A) 2006, 203, 3207–3225.

[6]

Niethammer, M.; Widmann, M.; Rendler, T.; Morioka, N.; Chen, Y. C.; Stöhr, R.; Hassan, J. U.; Onoda, S.; Ohshima, T.; Lee, S. Y. et al. Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nat. Commun. 2019, 10, 5569.

[7]

Yuan, J.; Wu, S. Q.; Liu, M. J.; Sato, O.; Kou, H. Z. Rhodamine 6G-labeled pyridyl aroylhydrazone Fe(II) complex exhibiting synergetic spin crossover and fluorescence. J. Am. Chem. Soc. 2018, 140, 9426–9433.

[8]

Wang, J. L.; Liu, Q.; Meng, Y. S.; Liu, X.; Zheng, H.; Shi, Q.; Duan, C. Y.; Liu, T. Fluorescence modulation via photoinduced spin crossover switched energy transfer from fluorophores to FeII ions. Chem. Sci. 2018, 9, 2892–2897.

[9]

Wang, C. F.; Li, R. F.; Chen, X. Y.; Wei, R. J.; Zheng, L. S.; Tao, J. Synergetic spin crossover and fluorescence in one-dimensional hybrid complexes. Angew. Chem., Int. Ed. 2015, 54, 1574–1577.

[10]

Lochenie, C.; Schötz, K.; Panzer, F.; Kurz, H.; Maier, B.; Puchtler, F.; Agarwal, S.; Köhler, A.; Weber, B. Spin-crossover iron(II) coordination polymer with fluorescent properties: Correlation between emission properties and spin state. J. Am. Chem. Soc. 2018, 140, 700–709.

[11]

Kurz, H.; Schötz, K.; Papadopoulos, I.; Heinemann, F. W.; Maid, H.; Guldi, D. M.; Köhler, A.; Hörner, G.; Weber, B. A fluorescence-detected coordination-induced spin state switch. J. Am. Chem. Soc. 2021, 143, 3466–3480.

[12]

Garcia, Y.; Robert, F.; Naik, A. D.; Zhou, G. Y.; Tinant, B.; Robeyns, K.; Michotte, S.; Piraux, L. Spin transition charted in a fluorophore-tagged thermochromic dinuclear iron(II) complex. J. Am. Chem. Soc. 2011, 133, 15850–15853.

[13]

Zerai Tedlla, B.; Zhu, F.; Cox, M.; Koopmans, B.; Goovaerts, E. Spin-dependent photophysics in polymers lightly doped with fullerene derivatives: Photoluminescence and electrically detected magnetic resonance. Phys. Rev. B 2015, 91, 085309.

[14]

Stevenson, S.; Dorn, H. C.; Burbank, P.; Harich, K.; Sun, Z.; Kiang, C. H.; Salem, J. R.; DeVries, M. S.; van Loosdrecht, P. H. M.; Johnson, R. D. et al. Isolation and monitoring of the endohedral metallofullerenes Y@C82 and Sc3@C82: Online chromatographic separation with EPR detection. Anal. Chem. 1994, 66, 2680–2685.

[15]

Pietzak, B.; Waiblinger, M.; Murphy, T. A.; Weidinger, A.; Höhne, M.; Dietel, E.; Hirsch, A. Buckminsterfullerene C60: A chemical Faraday cage for atomic nitrogen. Chem. Phys. Lett. 1997, 279, 259–263.

[16]

Laasonen, K.; Andreoni, W.; Parrinello, M. Structural and electronic properties of La@C82. Science 1992, 258, 1916–1918.

[17]

Fu, W. J.; Zhang, J. Y.; Fuhrer, T.; Champion, H.; Furukawa, K.; Kato, T.; Mahaney, J. E.; Burke, B. G.; Williams, K. A.; Walker, K. et al. Gd2@C79N: Isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J. Am. Chem. Soc. 2011, 133, 9741–9750.

[18]

Shinohara, H.; Sato, H.; Ohkohchi, M.; Ando, Y.; Kodama, T.; Shida, T.; Kato, T.; Saito, Y. Encapsulation of a scandium trimer in C82. Nature 1992, 357, 52–54.

[19]

Wang, T. S.; Wu, J. Y.; Xu, W.; Xiang, J. F.; Lu, X.; Li, B.; Jiang, L.; Shu, C. Y.; Wang, C. R. Spin divergence induced by exohedral modification: ESR study of Sc3C2@C80 fulleropyrrolidine. Angew. Chem., Int. Ed. 2010, 49, 1786–1789.

[20]

Meng, H. B.; Zhao, C.; Li, Y. J.; Nie, M. Z.; Wang, C. R.; Wang, T. S. An implanted paramagnetic metallofullerene probe within a metal-organic framework. Nanoscale 2018, 10, 3291–3298.

[21]

Meng, H. B.; Chai, Y. Q.; Zhao, C.; Nie, M. Z.; Wang, C. R.; Wang, T. S. Covalently bonded two spin centers of paramagnetic metallofullerene dimer. Nano Res. 2021, 14, 4658–4663.

[22]

Liu, Z.; Dong, B. W.; Meng, H. B.; Xu, M. X.; Wang, T. S.; Wang, B. W.; Wang, C. R.; Jiang, S. D.; Gao, S. Qubit crossover in the endohedral fullerene Sc3C2@C80. Chem. Sci. 2018, 9, 457–462.

[23]

Meng, H. B.; Zhao, C.; Nie, M. Z.; Wang, C. R.; Wang, T. S. Changing the hydrophobic MOF pores through encapsulating fullerene C60 and metallofullerene Sc3C2@C80. J. Phys. Chem. C 2019, 123, 6265–6269.

[24]

Meng, H. B.; Zhao, C.; Nie, M. Z.; Wang, C. R.; Wang, T. S. Optically controlled molecular metallofullerene magnetism via an azobenzene-functionalized metal-organic framework. ACS Appl. Mater. Interfaces 2018, 10, 32607–32612.

[25]

Wu, B.; Wang, T. S.; Feng, Y. Q.; Zhang, Z. X.; Jiang, L.; Wang, C. R. Molecular magnetic switch for a metallofullerene. Nat. Commun. 2015, 6, 6468.

[26]

Kato, T.; Bandou, S.; Inakuma, M.; Shinohara, H. ESR study on structures and dynamics of Sc3@C82. J. Phys. Chem. 1995, 99, 856–858.

[27]

Shinohara, H.; Inakuma, M.; Hayashi, N.; Sato, H.; Saito, Y.; Kato, T.; Bandow, S. Spectroscopic properties of isolated Sc3@C82 metallofullerene. J. Phys. Chem. 1994, 98, 8597–8599.

[28]

Lapin, N. A.; Krzykawska-Serda, M.; Dilliard, S.; Mackeyev, Y.; Serda, M.; Wilson, L. J.; Curley, S. A.; Corr, S. J. The effects of non-invasive radiofrequency electric field hyperthermia on biotransport and biodistribution of fluorescent [60]fullerene derivative in a murine orthotopic model of breast adenocarcinoma. J. Control. Release 2017, 260, 92–99.

[29]

Zhu, Y. L.; Shen, Y. C.; Liu, F.; Chen, S.; Yan, G. P.; Liang, S. C.; Zhang, Y. F.; Wu, Y. G. Dual-modal fullerenol probe containing glypican-3 monoclonal antibody for electron paramagnetic resonance/fluorescence imaging. Fuller. Nanotub. Car. Nanostruct. 2021, 29, 280–287.

[30]

Zhen, M. M.; Zheng, J. P.; Wang, Y. F.; Shu, C. Y.; Gao, F. B.; Zou, J.; Pyykkö, I.; Wang, C. R. Multifunctional nanoprobe for MRI/optical dual-modality imaging and radical scavenging. Chem.—Eur. J. 2013, 19, 14675–14681.

[31]

Zhao, C.; Meng, H. B.; Nie, M. Z.; Wang, X.; Cai, Z. F.; Chen, T.; Wang, D.; Wang, C. R.; Wang, T. S. Supramolecular complexes of C80-based metallofullerenes with [12]cycloparaphenylene nanoring and altered property in a confined space. J. Phys. Chem. C 2019, 123, 12514–12520.

[32]

Zhao, C.; Meng, H. B.; Nie, M. Z.; Huang, Q.; Du, P. W.; Wang, C. R.; Wang, T. S. Construction of a short metallofullerene-peapod with a spin probe. Chem. Commun. 2019, 55, 11511–11514.

[33]

Stergiou, A.; Rio, J.; Griwatz, J. H.; Arčon, D.; Wegner, H. A.; Ewels, C. P.; Tagmatarchis, N. A long-lived azafullerenyl radical stabilized by supramolecular shielding with a [10]cycloparaphenylene. Angew. Chem., Int. Ed. 2019, 58, 17745–17750.

[34]

Omachi, H.; Nakayama, T.; Takahashi, E.; Segawa, Y.; Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 2013, 5, 572–576.

[35]

Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: Carbon nanohoop structures. J. Am. Chem. Soc. 2008, 130, 17646–17647.

[36]

Nie, M. Z.; Liang, J. Y.; Zhao, C.; Lu, Y. X.; Zhang, J.; Li, W.; Wang, C. R.; Wang, T. S. Single-molecule magnet with thermally activated delayed fluorescence based on a metallofullerene integrated by dysprosium and yttrium ions. ACS Nano 2021, 15, 19080–19088.

[37]

Segawa, Y.; Miyamoto, S.; Omachi, H.; Matsuura, S.; Šenel, P.; Sasamori, T.; Tokitoh, N.; Itami, K. Concise synthesis and crystal structure of [12]cycloparaphenylene. Angew. Chem., Int. Ed. 2011, 50, 3244–3248.

[38]

Grabicki, N.; Nguyen, K. T. D.; Weidner, S.; Dumele, O. Confined spaces in [n]cyclo-2,7-pyrenylenes. Angew. Chem., Int. Ed. 2021, 60, 14909–14914.

[39]

Iwamoto, T.; Watanabe, Y.; Sadahiro, T.; Haino, T.; Yamago, S. Size-selective encapsulation of C60 by [10]cycloparaphenylene: Formation of the shortest fullerene-peapod. Angew. Chem., Int. Ed. 2011, 50, 8342–8344.

[40]

Iwamoto, T.; Slanina, Z.; Mizorogi, N.; Guo, J. D.; Akasaka, T.; Nagase, S.; Takaya, H.; Yasuda, N.; Kato, T.; Yamago, S. Partial charge transfer in the shortest possible metallofullerene peapod, La@C82⊂[11]cycloparaphenylene. Chem.—Eur. J. 2014, 20, 14403–14409.

[41]

Nakanishi, Y.; Omachi, H.; Matsuura, S.; Miyata, Y.; Kitaura, R.; Segawa, Y.; Itami, K.; Shinohara, H. Size-selective complexation and extraction of endohedral metallofullerenes with cycloparaphenylene. Angew. Chem., Int. Ed. 2014, 53, 3102–3106.

[42]

Zhang, J.; Zhao, C.; Meng, H. B.; Nie, M. Z.; Li, Q.; Xiang, J. F.; Zhang, Z. X.; Wang, C. R.; Wang, T. S. Size-selective encapsulation of metallofullerenes by [12]Cycloparaphenylene and dissociation using metal-organic framework. Carbon 2020, 161, 694–701.

[43]

Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C60: A new form of carbon. Nature 1990, 347, 354–358.

[44]

Qiu, Z. L.; Tang, C.; Wang, X. R.; Ju, Y. Y.; Chu, K. S.; Deng, Z. Y.; Hou, H.; Liu, Y. M.; Tan, Y. Z. Tetra-benzothiadiazole-based [12]cycloparaphenylene with bright emission and its supramolecular assembly. Angew. Chem., Int. Ed. 2020, 59, 20868–20872.

[45]

Yuan, K.; Zhou, C. H.; Zhu, Y. C.; Zhao, X. Theoretical exploration of the nanoscale host–guest interactions between [n]cycloparaphenylenes (n = 10, 8 and 9) and fullerene C60: From single- to three-potential well. Phys. Chem. Chem. Phys. 2015, 17, 18802–18812.

[46]

Meng, H. B.; Zhao, C.; Nie, M. Z.; Wang, C. R.; Wang, T. S. Triptycene molecular rotors mounted on metallofullerene Sc3C2@C80 and their spin-rotation couplings. Nanoscale 2018, 10, 18119–18123.

[47]
Schweiger, A.; Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance; Oxford University Press: Oxford, 2001; pp 209–213.
[48]

Struck, C. W.; Fonger, W. H. Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S. J. Appl. Phys. 1971, 42, 4515–4516.

[49]

Shi, Y.; Cai, K.; Xiao, H.; Liu, Z. C.; Zhou, J. W.; Shen, D. K.; Qiu, Y. Y.; Guo, Q. H.; Stern, C.; Wasielewski, M. R. et al. Selective extraction of C70 by a tetragonal prismatic porphyrin cage. J. Am. Chem. Soc. 2018, 140, 13835–13842.

[50]

Aghamohammadi, M.; Alizadeh, N. Fluorescence enhancement of the aflatoxin B1 by forming inclusion complexes with some cyclodextrins and molecular modeling study. J. Lumin. 2007, 127, 575–582.

File
12274_2022_5158_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2022
Revised: 03 October 2022
Accepted: 06 October 2022
Published: 03 December 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52022098 and 51972309) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. Y201910).

Return