AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamic reconstruction of Ni-Zn alloy solid-electrolyte interface for highly stable Zn anode

Qian Zhang1,§Yuhang Dai1,§Kangning Zhao1,§Chengyi Zhang1Ruihu Lu1Jinghao Li1Shuhan Jin1Lei Zhang1,2,3( )Qinyou An1Liqiang Mai1,3( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Physical Science and Technology, School of Science, Wuhan University of Technology, Wuhan 430070, China
Hainan Institute, Wuhan University of Technology, Sanya 572000, China

§ Qian Zhang, Yuhang Dai, and Kangning Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Ni-Zn alloy is artificially constructed as a solid-electrolyte interface (SEI) for Zn anodes by electrodeposition and annealing. The Ni-Zn alloy layer acts as dynamic shielding effect in electrode/electrolyte interface. Interestingly, the zinc atoms migrate out of the body upon zinc stripping, while merge into the electrode body during plating.

Abstract

Aqueous zinc ion batteries (AZIBs) are ideal candidates for large-scale battery storage, with a high theoretical specific capacity, ecological friendliness, and extremely low cost but are strongly hindered by zinc dendrite growth. Herein, Ni-Zn alloy is artificially constructed as a solid-electrolyte interface (SEI) for Zn anodes by electrodeposition and annealing. The Ni-Zn alloy layer acts as a dynamic shield at the electrode/electrolyte interface. Interestingly, the zinc atoms migrate out of the electrode body during zinc stripping while merging into the electrode body during the plating. In this way, the Ni-Zn alloy is able to guide the zinc deposition in the horizontal direction, thereby suppressing the formation of dendrite. Benefiting from those, the Ni-Zn alloy symmetric cell shows a greatly improved cycle life and is able to operate stably for 1,900 h at a current density of 0.5 mA·cm−2. The present study is a strategy for negative electrode protection of AZIBs.

Electronic Supplementary Material

Video
12274_2022_5157_MOESM1_ESM.mp4
12274_2022_5157_MOESM2_ESM.mp4
12274_2022_5157_MOESM3_ESM.mp4
12274_2022_5157_MOESM4_ESM.mp4
12274_2022_5157_MOESM5_ESM.mp4
Download File(s)
12274_2022_5157_MOESM6_ESM.pdf (1.9 MB)

References

[1]

Yang, Y.; Huang, G. Y.; Xu, S. M.; He, Y. H.; Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 2016, 165, 390–396.

[2]

Vishvakarma, S.; Dhawan, N. Recovery of cobalt and lithium values from discarded Li-ion batteries. J. Sustainable Metall. 2019, 5, 204–209.

[3]

Hou, Z. G.; Dong, M. F.; Xiong, Y. L.; Zhang, X. Q.; Ao, H. S.; Liu, M. K.; Zhu, Y. C.; Qian, Y. T. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion. Small 2020, 16, 2001228.

[4]

Hou, Z. G.; Zhang, X. Q.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 2017, 5, 730–738.

[5]

Hou, Z. G.; Mao, W. T.; Zhang, Z. X.; Chen, J. W.; Ao, H. S.; Qian, Y. T. Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 2022, 15, 5072–5080.

[6]

Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.

[7]

Dai, Y. H.; Li, J. H.; Chen, L. N.; Le, K. H.; Cai, Z. J.; An, Q. Y.; Zhang, L.; Mai, L. Q. Generating H+ in catholyte and OH in anolyte: An approach to improve the stability of aqueous zinc-ion batteries. ACS Energy Lett. 2021, 6, 684–686.

[8]

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

[9]

Jian, Q. P.; Wan, Y. H.; Sun, J.; Wu, M. C.; Zhao, T. S. A dendrite-free zinc anode for rechargeable aqueous batteries. J. Mater. Chem. A 2020, 8, 20175–20184.

[10]

An, Y. L.; Tian, Y.; Zhang, K.; Liu, Y. P.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 2021, 31, 2101886.

[11]

Liu, H. Z.; Li, J. H.; Zhang, X. N.; Liu, X. X.; Yan, Y.; Chen, F. J.; Zhang, G. H.; Duan, H. G. Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2106550.

[12]

An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 2021, 15, 15259–15273.

[13]

Cui, M. W.; Xiao, Y.; Kang, L. T.; Du, W.; Gao, Y. F.; Sun, X. Q.; Zhou, Y. L.; Li, X. M.; Li, H. F.; Jiang, F. Y. et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496.

[14]

Zhang, Y. M.; Howe, J. D.; Ben-Yoseph, S.; Wu, Y. T.; Liu, N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 2021, 6, 404–412.

[15]

He, P.; Huang, J. X. Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 2021, 6, 1990–1995.

[16]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[17]

Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.

[18]

Chen, S. G.; Lan, R.; Humphreys, J.; Tao, S. W. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 2020, 28, 205–215.

[19]

Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J. Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 2020, 16, 2001323.

[20]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[21]

Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.

[22]

Wang, J. W.; Yang, Y.; Zhang, Y. X.; Li, Y. M.; Sun, R.; Wang, Z. C.; Wang, H. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 2021, 35, 19–46.

[23]

Ieffa, S.; Bernasconi, R.; Nobili, L.; Cavallotti, P. L.; Magagnin, L. Direct and pulse plating of metastable Zn-Ni alloys. Trans. IMF 2014, 92, 321–324.

[24]

Bernasconi, R.; Panzeri, G.; Firtin, G.; Kahyaoglu, B.; Nobili, L.; Magagnin, L. Electrodeposition of ZnNi alloys from choline chloride/ethylene glycol deep eutectic solvent and pure ethylene glycol for corrosion protection. J. Phys. Chem. B 2020, 124, 10739–10751.

[25]

Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

[26]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[27]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[28]

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

[29]

Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232.

[30]

Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.

[31]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[32]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[33]

Smidstrup, S.; Pedersen, A.; Stokbro, K.; Jónsson, H. Improved initial guess for minimum energy path calculations. J. Chem. Phys. 2014, 140, 214106.

[34]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[35]

Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

[36]

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 2002, 114, 10024–10035.

[37]

Abou-Krisha, M. M.; Assaf, F. H.; Alduaij, O. K.; Eissa, A. A. Deposition potential influence on the electrodeposition of Zn-Ni-Mn alloy. Trans. Indian Inst. Met. 2017, 70, 31–40.

[38]

Zhang, D. D.; Shi, J. Y.; Qi, Y.; Wang, X. M.; Wang, H.; Li, M. R.; Liu, S. Z.; Li, C. Quasi-amorphous metallic nickel nanopowder as an efficient and durable electrocatalyst for alkaline hydrogen evolution. Adv. Sci. (Weinh. ) 2018, 5, 1801216.

[39]

Chu, Y. Z.; Zhang, S.; Wu, S.; Hu, Z. L.; Cui, G. L.; Luo, J. Y. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy. Environ. Sci. 2021, 14, 3609–3620.

[40]

Jia, H.; Wang, Z. Q.; Dirican, M.; Qiu, S.; Chan, C. Y.; Fu, S. H.; Fei, B.; Zhang, X. W. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J. Mater. Chem. A 2021, 9, 5597–5605.

[41]

Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.

[42]

Yang, Y.; Liu, C. Y.; Lv, Z. H.; Yang, H.; Zhang, Y. F.; Ye, M. H.; Chen, L. B.; Zhao, J. B.; Li, C. C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 2021, 33, 2007388.

[43]

Zhai, S. L.; Wang, N.; Tan, X. H.; Jiang, K. R.; Quan, Z. Y.; Li, Y. W.; Li, Z. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv. Funct. Mater. 2021, 31, 2008894.

[44]

Wang, Y. Y.; Chen, Y. J.; Liu, W.; Ni, X. Y.; Qing, P.; Zhao, Q. W.; Wei, W. F.; Ji, X. B.; Ma, J. M.; Chen, L. B. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 2021, 9, 8452–8461.

[45]

Qian, Y.; Meng, C.; He, J. X.; Dong, X. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J. Power Sources 2020, 480, 228871.

[46]

Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

[47]

Hong, L.; Wu, X. M.; Ma, C.; Huang, W.; Zhou, Y. F.; Wang, K. X.; Chen, J. S. Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 2021, 9, 16814–16823.

[48]

Guo, W.; Zhang, Y.; Tong, X.; Wang, X.; Zhang, L.; Xia, X.; Tu, J. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 2021, 20, 100675.

[49]

Liang, R. L.; Fu, J.; Deng, Y. P.; Pei, Y.; Zhang, M. W.; Yu, A. P.; Chen, Z. W. Parasitic electrodeposition in Zn-MnO2 batteries and its suppression for prolonged cyclability. Energy Storage Mater. 2021, 36, 478–484.

Nano Research
Pages 11604-11611
Cite this article:
Zhang Q, Dai Y, Zhao K, et al. Dynamic reconstruction of Ni-Zn alloy solid-electrolyte interface for highly stable Zn anode. Nano Research, 2023, 16(9): 11604-11611. https://doi.org/10.1007/s12274-022-5157-x
Topics:
Part of a topical collection:

5580

Views

5

Crossref

7

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 22 August 2022
Revised: 05 October 2022
Accepted: 06 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return