Journal Home > Volume 16 , Issue 4

Edge-functionalization of graphene is emerging as a powerful chemical method for the construction of π-delocalized highly-planar graphene nanoconjugates that are not accessible through surface-supported syntheses. Herein, a graphene-porphyrin nanoconjugate via a robust pyrazine (pz) linkage has been obtained by condensing 2,3-diamino-5,10,15,20-tetraphenylporphyrin (DA-TPP) with ortho-quinone (o-quinone) moieties at edge sites of graphene oxide (GO). The as-prepared GO-pz-TPP exhibits an intense absorption extending from 375 to 900 nm and a high quenching yield (98%) of fluorescence, indicating a strong electronic coupling effect between GO and TPP units. GO-pz-TPP displays strong nonlinear optical (NLO) absorption and giant NLO coefficients with 800 and 1,030 nm fs laser, in sharp contrast to traditional graphene-porphyrin nanohybrids only NLO-active towards ns laser. Such a dramatic NLO performance towards femtosecond pulsed laser has not been achieved in any carbon-chromophores nanohybridized materials to date. This work validates the π-extended edge-functionalization strategy as a means to tune the NLO properties of graphene, thereby providing a new paradigm for the assembly of versatile optoelectronic materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dramatic femtosecond nonlinear absorption at a strongly coupled porphyrin-graphene nanoconjugate

Show Author's information Lulu Fu1,§Yan Fang1,§Zihao Guan1Zhiyuan Wei1Rui Yang2Naying Shan1Fang Liu1Yang Zhao1Mingfei Zhang1Zhipeng Huang1Mark G. Humphrey3Chi Zhang1( )
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
United World College, Changshu 215500, China
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

§ Lulu Fu and Yan Fang contributed equally to this work.

Abstract

Edge-functionalization of graphene is emerging as a powerful chemical method for the construction of π-delocalized highly-planar graphene nanoconjugates that are not accessible through surface-supported syntheses. Herein, a graphene-porphyrin nanoconjugate via a robust pyrazine (pz) linkage has been obtained by condensing 2,3-diamino-5,10,15,20-tetraphenylporphyrin (DA-TPP) with ortho-quinone (o-quinone) moieties at edge sites of graphene oxide (GO). The as-prepared GO-pz-TPP exhibits an intense absorption extending from 375 to 900 nm and a high quenching yield (98%) of fluorescence, indicating a strong electronic coupling effect between GO and TPP units. GO-pz-TPP displays strong nonlinear optical (NLO) absorption and giant NLO coefficients with 800 and 1,030 nm fs laser, in sharp contrast to traditional graphene-porphyrin nanohybrids only NLO-active towards ns laser. Such a dramatic NLO performance towards femtosecond pulsed laser has not been achieved in any carbon-chromophores nanohybridized materials to date. This work validates the π-extended edge-functionalization strategy as a means to tune the NLO properties of graphene, thereby providing a new paradigm for the assembly of versatile optoelectronic materials.

Keywords: graphene oxide, porphyrin, nonlinear optics, femtosecond, nanoconjugate

References(59)

[1]

Novoselov, K. S.; Geim A. K.; Morozov S. V.; Jiang, D.; Zhang, Y.; Dubonos S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[3]

Chen, Y.; Zhang, B.; Liu, G.; Zhuang, X. D.; Kang, E. T. Graphene and its derivatives: Switching ON and OFF. Chem. Soc. Rev. 2012, 41, 4688–4707.

[4]

Tian, S. F.; Che, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom–up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.

[5]

Sarmah, A.; Wasfi, A.; Hobza, P.; Tit, N. Azobenzene-iron(III)porphyrin hybrid composite as a light-driven molecular spin regulator: Some promising insights from DFT. Chem. Mater. 2021, 33, 8786–8799.

[6]

Urbani, M.; Grätzel, M.; Nazeeruddin, M. K.; Torres, T. Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 2014, 114, 12330–12396.

[7]

Mone, M.; Tang, S.; Murto, P.; Abdulahi, B. A.; Larsen, C.; Wang, J.; Mammo, W.; Edman, L.; Wang, E. G. Star-shaped diketopyrrolopyrrole-zinc porphyrin that delivers 900 nm emission in light-emitting electrochemical cells. Chem. Mater. 2019, 31, 9721–9728.

[8]

Gao, K.; Kan, Y. Y.; Chen, X. B.; Liu, F.; Kan, B.; Nian, L.; Wan, X. J.; Chen, Y. S.; Peng, X. B.; Russell, T. P. et al. Low-bandgap porphyrins for highly efficient organic solar cells: Materials, morphology, and applications. Adv. Mater. 2020, 32, 1906129.

[9]

Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coordin. Chem. Rev. 2018, 375, 489–513.

[10]

Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.

[11]

Tarelho, J. P. G.; dos Santos, M. P. S.; Ferreira, J. A. F.; Ramos, A.; Kopyl, S.; Kim, S. O.; Hong, S.; Kholkin, A. Graphene-based materials and structures for energy harvesting with fluids—A review. Mater. Today 2018, 21, 1019–1041.

[12]

Guo, J.; Yan, X. M.; Liu, Q.; Li, Q.; Xu, X.; Kang, L. T.; Cao, Z. M.; Chai, G. L.; Chen, J.; Wang, Y. B. et al. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.

[13]

Gao, Y. X.; Wang, J. Q.; Feng, Y. C.; Cao, N. J.; Li, H.; de Rooij, N. F.; Umar, A.; French, P. J.; Wang, Y.; Zhou, G. F. Carbon-iron electron transport channels in porphyrin-graphene complex for ppb-level room temperature NO gas sensing. Small 2022, 18, 2103259.

[14]

Wang, A. J.; Yu, W.; Xiao, Z. G.; Song, Y. L.; Long, L. L.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. A 1,3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push–pull motif. Nano Res. 2015, 8, 870–886.

[15]

Wei, P. J.; Yu, G. Q.; Naruta, Y.; Liu, J. G. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 6659–6663.

[16]

Dasler, D.; Schäfer, R. A.; Minameyer, M. B.; Hitzenberger, J. F.; Hauke, F.; Drewello, T.; Hirsch, A. Direct covalent coupling of porphyrins to graphene. J. Am. Chem. Soc. 2017, 139, 11760–11765.

[17]

Li, R. X.; Ren, X. T.; Tang, M. Y.; Chen, M. X.; Huang, G. B.; Fang, C. H.; Liu, T.; Feng, Z. H.; Yin, Y. B.; Guo, Y. M. et al. Fabrication of covalently linked graphene-mediated [FeFe]-hydrogenases biomimetic photocatalytic hydrogen evolution system in aqueous solution. Appl. Catal. B: Environ. 2018, 224, 772–782.

[18]

Fu, L. L.; Ye, J.; Li, H.; Huang, Z. P.; Humphrey, M. G.; Zhang, C. Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid. Nano Res. 2022, 15, 1355–1365.

[19]
Fu, L. L; Humphrey, M. G.; Zhang, C. Covalent edge-functionalization of graphene oxide with porphyrins for highly efficient photoinduced electron/energy transfer and enhanced nonlinear opticalperformance. Nano Res. in press, https://doi.org/10. 1007/s12274-022-4729-0.
[20]

Blau, W.; Byrne, H.; Dennis, W. M.; Kelly, J. M. Reverse saturable absorption in tetraphenylporphyrins. Opt. Comm. 1985, 56, 25–29.

[21]

Su, W. J.; Cooper, T. M.; Brant, M. C. Investigation of reverse-saturable absorption in brominated porphyrins. Chem. Mater. 1998, 10, 1212–1213.

[22]

Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear optical properties of porphyrins. Adv. Mater. 2007, 19, 2737–2774.

[23]

Shi, L. M.; Nguyen, C.; Daurat, M.; Dhieb, A. C.; Smirani, W.; Blanchard-Desce, M.; Gary-Bobo, M.; Mongin, O.; Paul-Roth, C.; Paul, F. Biocompatible conjugated fluorenylporphyrins for two-photon photodynamic therapy and fluorescence imaging. Chem. Commun. 2019, 55, 12231–12234.

[24]

Zhang, P. S.; Jiang, X. F.; Nie, X. Z.; Huang, Y.; Zeng, F.; Xia, X. T.; Wu, S. Z. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GGT) level in vivo. Biomaterials 2016, 80, 46–56.

[25]

Lee, K. K. C.; Herman, P. R.; Shoa, T.; Haque, M.; Madden, J. D. W.; Yang, V. X. D. Microstructuring of polypyrrole by maskless direct femtosecond laser ablation. Adv. Mater. 2012, 24, 1243–1246.

[26]

Wang, K. P.; Zhang, X. Y.; Kislyakov, I. M.; Dong, N. N.; Zhang, S. F.; Wang, G. Z.; Fan, J. T.; Zou, X.; Du, J.; Leng, Y. X. et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 2019, 10, 3985.

[27]

Xu, J. L.; Li, X. Y.; Xiong, J. B.; Yuan, C. Q.; Semin, S.; Rasing, T.; Bu, X. H. Halide perovskites for nonlinear optics. Adv. Mater. 2020, 32, 1806736.

[28]

Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

[29]

Mateo, L. M.; Sun, Q.; Eimre, K.; Pignedoli, C. A.; Torres, T.; Fasel, R.; Bottari, G. On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chem. Sci. 2021, 12, 247–252.

[30]

He, Y. Q.; Garnica, M.; Bischoff, F.; Ducke, J.; Bocquet, M. L.; Batzill, M.; Auwärter, W.; Barth, J. V. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nat. Chem. 2017, 9, 33–38.

[31]

Mateo, L. M.; Sun, Q.; Liu, S. X.; Bergkamp, J. J.; Eimre, K.; Pignedoli, C. A.; Ruffieux, P.; Decurtins, S.; Bottari, G.; Fasel, R. et al. On-surface synthesis and characterization of triply fused porphyrin-graphene nanoribbon hybrids. Angew. Chem., Int. Ed. 2020, 59, 1334–1339.

[32]

Xu, X.; Di Giovannantonio, M.; Urgel, J. I.; Pignedoli, C.A.; Ruffieux, P.;Muellen, K.; Fasel, R.; Narita, A. On-surface activation of benzylic C–H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Res 2021, 14, 4754–4759.

[33]

Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769.

[34]

Kim, D. Y.; Ahn, T. K.; Kwon, J. H.; Kim, D.; Ikeue, T.; Aratani, N.; Osuka, A.; Shigeiwa, M.; Maeda, S. Large two-photon absorption (TPA) cross-section of directly linked fused diporphyrins. J. Phys. Chem. A 2005, 109, 2996–2999.

[35]

Feng, W.; Liu, K.; Zang, J. Y.; Wang, G.; Miao, R.; Ding, L. P.; Liu, T. H.; Kong, J. L.; Fang, Y. Flexible and transparent oligothiophene-o-carborane-containing hybrid films for nonlinear optical limiting based on efficient two-photon absorption. ACS Appl. Mater. Interfaces 2021, 13, 28985–28995.

[36]

Eng, A. Y. S.; Chua, C. K.; Pumera, M. Refinements to the structure of graphite oxide: Absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256–20266.

[37]

Crossley, M. J.; Burn, P. L. Rigid, laterally-bridged bis-porphyrin system. J. Chem. Soc. Chem. Commun. 1987, 39–40.

[38]

Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; Hirsch, A.; Martín, N.; D'Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017, 46, 4464–4500.

[39]

Garg, K.; Shanmugam, R.; Ramamurthy, P. C. New covalent hybrids of graphene oxide with core modified and expanded porphyrins: Synthesis, characterisation, and their non linear optical properties. Carbon 2017, 122, 307–318.

[40]

Zeng, J.; Chen, K. Q.; Tong, Y. X. Covalent coupling of porphines to graphene edges: Quantum transport properties and their applications in electronics. Carbon 2018, 127, 611–617.

[41]

He, T. W.; Zhang, C. M.; Will, G.; Du, A. J. Cobalt porphyrin supported on graphene/Ni (111) surface: Enhanced oxygen evolution/reduction reaction and the role of electron coupling. Catal. Today 2020, 351, 113–118.

[42]

Gu, H. L.; Zhong, L. X.; Shi, G. S.; Li, J. Q.; Yu, K.; Li, J.; Zhang, S.; Zhu, C. Y.; Chen, S. H.; Yang, C. L. et al. Graphdiyne/graphene heterostructure: A universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 8679–8688.

[43]

Wang, H. F.; Zhao, M.; Zhao, Q.; Yang, Y. F.; Wang, C. Y.; Wang, Y. J. In-situ immobilization of H5PMo10V2O40 on protonated graphitic carbon nitride under hydrothermal conditions: A highly efficient and reusable catalyst for hydroxylation of benzene. Ind. Eng. Chem. Res. 2017, 56, 2711–2721.

[44]

Kundu, S.; Chowdhury, I. H.; Naskar, M. K. Nitrogen-doped nanoporous carbon nanospheroids for selective dye adsorption and Pb(II) ion removal from waste water. ACS Omega 2018, 3, 9888–9898.

[45]

Jain, P.; Das, S.; Chakma, B.; Goswami, P. Aptamer-graphene oxide for highly sensitive dual electrochemical detection of Plasmodium lactate dehydrogenase. Anal. Biochem. 2016, 514, 32–37.

[46]

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 2008, 3, 563–568.

[47]

Tsuda, A.; Osuka, A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science 2001, 293, 79–82.

[48]

Tsuda, A.; Osuka, A. Discrete conjugated porphyrin tapes with an exceptionally small bandgap. Adv. Mater. 2002, 14, 75–79.

[49]

Sun, Q.; Mateo, L. M.; Robles, R.; Lorente, N.; Ruffieux, P.; Bottari, G.; Torres, T.; Fasel, R. Bottom–up fabrication and atomic-scale characterization of triply linked, laterally π-extended porphyrin nanotapes. Angew. Chem., Int. Ed. 2021, 60, 16208–16214.

[50]

Nayak, A.; Park, J.; De Mey, K.; Hu, X. Q.; Duncan, T. V.; Beratan, D. N.; Clays, K.; Therien, M. J. Large hyperpolarizabilities at telecommunication-relevant wavelengths in donor–acceptor–donor nonlinear optical chromophores. ACS Cent. Sci. 2016, 2, 954–966.

[51]

Rauch, F.; Krebs, J.; Günther, J.; Friedrich, A.; Hähnel, M.; Krummenacher, I.; Braunschweig, H.; Finze, M.; Marder, T. B. Electronically driven regioselective iridium-catalyzed C–H borylation of donor–π–acceptor chromophores containing triarylboron acceptors. Chem. —Eur. J. 2020, 26, 10626–10633.

[52]

Liu, L. P.; Chen, X. J.; Chai, Y. Q.; Zhang, W. N.; Liu, X. L.; Zhao, F. W.; Wang, Z.; Weng, Y. X.; Wu, B.; Geng, H. et al. Highly efficient photocatalytic hydrogen production via porphyrin-fullerene supramolecular photocatalyst with donor–acceptor structure. Chem. Eng. J. 2022, 444, 136621.

[53]

Balapanuru, J.; Yang, J. X.; Xiao, S.; Bao, Q. L.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q. H.; Loh, K. P. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem., Int. Ed. 2010, 49, 6549–6553.

[54]
Fu, L. L.; Li, H.; Fang, Y.; Guan, Z. H.; Wei, Z. Y.; Shan, N. Y.; Liu, F.; Zhao, Y.; Huang,Z. P.; Humphrey, M. G. et al. Cascading electron transfer and photophysics in a donor–acceptor graphene nanoconjugate. Nano Res. in press, https://doi.org/10.1007/s12274-022-5167-8.
[55]

Liu, K. J.; Li, J.; Qi, H. Y.; Hambsch, M.; Rawle, J.; Vázquez, A. R.; Nia, A. S.; Pashkin, A.; Schneider, H.; Polozij, M. et al. A two-dimensional polyimide–graphene heterostructure with ultra-fast interlayer charge transfer. Angew. Chem., Int. Ed. 2021, 60, 13859–13864.

[56]

Lim, G. K.; Chen, Z. L.; Clark, J.; Goh, R. G. S.; Ng, W. H.; Tan, H. W.; Friend, R. H.; Ho, P. K. H.; Chua, L. L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554–560.

[57]

Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 2009, 21, 2430–2435.

[58]

McEwan, K. J.; Fleitz, P. A.; Rogers, J. E.; Slagle, J. E.; McLean, D. G.; Akdas, H.; Katterle, M.; Blake, I. M.; Anderson, H. L. Reverse saturable absorption in the near-infrared by fused porphyrin dimers. Adv. Mater. 2004, 16, 1933–1935.

[59]

Krishna, M. B. M.; Venkatramaiah, N.; Rao, D. N. Optical transmission control in graphene oxide and its organic composites with ultrashort laser pulses. J. Opt. 2014, 16, 015205.

File
12274_2022_5155_MOESM1_ESM.pdf (3.5 MB)
12274_2022_5155_MOESM2_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2022
Revised: 20 September 2022
Accepted: 06 October 2022
Published: 02 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 51432006), the Ministry of Science and Technology of China for the International Science Linkages Program (No. 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (No. IRT14R23), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (No. B13025), and the Innovation Program of Shanghai Municipal Education Commission are gratefully acknowledged. M.G.H thanks the Australian Research Council (No. DP170100411) for support.

Return