Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Edge-functionalization of graphene is emerging as a powerful chemical method for the construction of π-delocalized highly-planar graphene nanoconjugates that are not accessible through surface-supported syntheses. Herein, a graphene-porphyrin nanoconjugate via a robust pyrazine (pz) linkage has been obtained by condensing 2,3-diamino-5,10,15,20-tetraphenylporphyrin (DA-TPP) with ortho-quinone (o-quinone) moieties at edge sites of graphene oxide (GO). The as-prepared GO-pz-TPP exhibits an intense absorption extending from 375 to 900 nm and a high quenching yield (98%) of fluorescence, indicating a strong electronic coupling effect between GO and TPP units. GO-pz-TPP displays strong nonlinear optical (NLO) absorption and giant NLO coefficients with 800 and 1,030 nm fs laser, in sharp contrast to traditional graphene-porphyrin nanohybrids only NLO-active towards ns laser. Such a dramatic NLO performance towards femtosecond pulsed laser has not been achieved in any carbon-chromophores nanohybridized materials to date. This work validates the π-extended edge-functionalization strategy as a means to tune the NLO properties of graphene, thereby providing a new paradigm for the assembly of versatile optoelectronic materials.
Novoselov, K. S.; Geim A. K.; Morozov S. V.; Jiang, D.; Zhang, Y.; Dubonos S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Chen, Y.; Zhang, B.; Liu, G.; Zhuang, X. D.; Kang, E. T. Graphene and its derivatives: Switching ON and OFF. Chem. Soc. Rev. 2012, 41, 4688–4707.
Tian, S. F.; Che, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom–up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.
Sarmah, A.; Wasfi, A.; Hobza, P.; Tit, N. Azobenzene-iron(III)porphyrin hybrid composite as a light-driven molecular spin regulator: Some promising insights from DFT. Chem. Mater. 2021, 33, 8786–8799.
Urbani, M.; Grätzel, M.; Nazeeruddin, M. K.; Torres, T. Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 2014, 114, 12330–12396.
Mone, M.; Tang, S.; Murto, P.; Abdulahi, B. A.; Larsen, C.; Wang, J.; Mammo, W.; Edman, L.; Wang, E. G. Star-shaped diketopyrrolopyrrole-zinc porphyrin that delivers 900 nm emission in light-emitting electrochemical cells. Chem. Mater. 2019, 31, 9721–9728.
Gao, K.; Kan, Y. Y.; Chen, X. B.; Liu, F.; Kan, B.; Nian, L.; Wan, X. J.; Chen, Y. S.; Peng, X. B.; Russell, T. P. et al. Low-bandgap porphyrins for highly efficient organic solar cells: Materials, morphology, and applications. Adv. Mater. 2020, 32, 1906129.
Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coordin. Chem. Rev. 2018, 375, 489–513.
Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.
Tarelho, J. P. G.; dos Santos, M. P. S.; Ferreira, J. A. F.; Ramos, A.; Kopyl, S.; Kim, S. O.; Hong, S.; Kholkin, A. Graphene-based materials and structures for energy harvesting with fluids—A review. Mater. Today 2018, 21, 1019–1041.
Guo, J.; Yan, X. M.; Liu, Q.; Li, Q.; Xu, X.; Kang, L. T.; Cao, Z. M.; Chai, G. L.; Chen, J.; Wang, Y. B. et al. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.
Gao, Y. X.; Wang, J. Q.; Feng, Y. C.; Cao, N. J.; Li, H.; de Rooij, N. F.; Umar, A.; French, P. J.; Wang, Y.; Zhou, G. F. Carbon-iron electron transport channels in porphyrin-graphene complex for ppb-level room temperature NO gas sensing. Small 2022, 18, 2103259.
Wang, A. J.; Yu, W.; Xiao, Z. G.; Song, Y. L.; Long, L. L.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. A 1,3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push–pull motif. Nano Res. 2015, 8, 870–886.
Wei, P. J.; Yu, G. Q.; Naruta, Y.; Liu, J. G. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 6659–6663.
Dasler, D.; Schäfer, R. A.; Minameyer, M. B.; Hitzenberger, J. F.; Hauke, F.; Drewello, T.; Hirsch, A. Direct covalent coupling of porphyrins to graphene. J. Am. Chem. Soc. 2017, 139, 11760–11765.
Li, R. X.; Ren, X. T.; Tang, M. Y.; Chen, M. X.; Huang, G. B.; Fang, C. H.; Liu, T.; Feng, Z. H.; Yin, Y. B.; Guo, Y. M. et al. Fabrication of covalently linked graphene-mediated [FeFe]-hydrogenases biomimetic photocatalytic hydrogen evolution system in aqueous solution. Appl. Catal. B: Environ. 2018, 224, 772–782.
Fu, L. L.; Ye, J.; Li, H.; Huang, Z. P.; Humphrey, M. G.; Zhang, C. Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid. Nano Res. 2022, 15, 1355–1365.
Blau, W.; Byrne, H.; Dennis, W. M.; Kelly, J. M. Reverse saturable absorption in tetraphenylporphyrins. Opt. Comm. 1985, 56, 25–29.
Su, W. J.; Cooper, T. M.; Brant, M. C. Investigation of reverse-saturable absorption in brominated porphyrins. Chem. Mater. 1998, 10, 1212–1213.
Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear optical properties of porphyrins. Adv. Mater. 2007, 19, 2737–2774.
Shi, L. M.; Nguyen, C.; Daurat, M.; Dhieb, A. C.; Smirani, W.; Blanchard-Desce, M.; Gary-Bobo, M.; Mongin, O.; Paul-Roth, C.; Paul, F. Biocompatible conjugated fluorenylporphyrins for two-photon photodynamic therapy and fluorescence imaging. Chem. Commun. 2019, 55, 12231–12234.
Zhang, P. S.; Jiang, X. F.; Nie, X. Z.; Huang, Y.; Zeng, F.; Xia, X. T.; Wu, S. Z. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GGT) level in vivo. Biomaterials 2016, 80, 46–56.
Lee, K. K. C.; Herman, P. R.; Shoa, T.; Haque, M.; Madden, J. D. W.; Yang, V. X. D. Microstructuring of polypyrrole by maskless direct femtosecond laser ablation. Adv. Mater. 2012, 24, 1243–1246.
Wang, K. P.; Zhang, X. Y.; Kislyakov, I. M.; Dong, N. N.; Zhang, S. F.; Wang, G. Z.; Fan, J. T.; Zou, X.; Du, J.; Leng, Y. X. et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 2019, 10, 3985.
Xu, J. L.; Li, X. Y.; Xiong, J. B.; Yuan, C. Q.; Semin, S.; Rasing, T.; Bu, X. H. Halide perovskites for nonlinear optics. Adv. Mater. 2020, 32, 1806736.
Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.
Mateo, L. M.; Sun, Q.; Eimre, K.; Pignedoli, C. A.; Torres, T.; Fasel, R.; Bottari, G. On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chem. Sci. 2021, 12, 247–252.
He, Y. Q.; Garnica, M.; Bischoff, F.; Ducke, J.; Bocquet, M. L.; Batzill, M.; Auwärter, W.; Barth, J. V. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nat. Chem. 2017, 9, 33–38.
Mateo, L. M.; Sun, Q.; Liu, S. X.; Bergkamp, J. J.; Eimre, K.; Pignedoli, C. A.; Ruffieux, P.; Decurtins, S.; Bottari, G.; Fasel, R. et al. On-surface synthesis and characterization of triply fused porphyrin-graphene nanoribbon hybrids. Angew. Chem., Int. Ed. 2020, 59, 1334–1339.
Xu, X.; Di Giovannantonio, M.; Urgel, J. I.; Pignedoli, C.A.; Ruffieux, P.;Muellen, K.; Fasel, R.; Narita, A. On-surface activation of benzylic C–H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Res 2021, 14, 4754–4759.
Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769.
Kim, D. Y.; Ahn, T. K.; Kwon, J. H.; Kim, D.; Ikeue, T.; Aratani, N.; Osuka, A.; Shigeiwa, M.; Maeda, S. Large two-photon absorption (TPA) cross-section of directly linked fused diporphyrins. J. Phys. Chem. A 2005, 109, 2996–2999.
Feng, W.; Liu, K.; Zang, J. Y.; Wang, G.; Miao, R.; Ding, L. P.; Liu, T. H.; Kong, J. L.; Fang, Y. Flexible and transparent oligothiophene-o-carborane-containing hybrid films for nonlinear optical limiting based on efficient two-photon absorption. ACS Appl. Mater. Interfaces 2021, 13, 28985–28995.
Eng, A. Y. S.; Chua, C. K.; Pumera, M. Refinements to the structure of graphite oxide: Absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256–20266.
Crossley, M. J.; Burn, P. L. Rigid, laterally-bridged bis-porphyrin system. J. Chem. Soc. Chem. Commun. 1987, 39–40.
Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; Hirsch, A.; Martín, N.; D'Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017, 46, 4464–4500.
Garg, K.; Shanmugam, R.; Ramamurthy, P. C. New covalent hybrids of graphene oxide with core modified and expanded porphyrins: Synthesis, characterisation, and their non linear optical properties. Carbon 2017, 122, 307–318.
Zeng, J.; Chen, K. Q.; Tong, Y. X. Covalent coupling of porphines to graphene edges: Quantum transport properties and their applications in electronics. Carbon 2018, 127, 611–617.
He, T. W.; Zhang, C. M.; Will, G.; Du, A. J. Cobalt porphyrin supported on graphene/Ni (111) surface: Enhanced oxygen evolution/reduction reaction and the role of electron coupling. Catal. Today 2020, 351, 113–118.
Gu, H. L.; Zhong, L. X.; Shi, G. S.; Li, J. Q.; Yu, K.; Li, J.; Zhang, S.; Zhu, C. Y.; Chen, S. H.; Yang, C. L. et al. Graphdiyne/graphene heterostructure: A universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 8679–8688.
Wang, H. F.; Zhao, M.; Zhao, Q.; Yang, Y. F.; Wang, C. Y.; Wang, Y. J. In-situ immobilization of H5PMo10V2O40 on protonated graphitic carbon nitride under hydrothermal conditions: A highly efficient and reusable catalyst for hydroxylation of benzene. Ind. Eng. Chem. Res. 2017, 56, 2711–2721.
Kundu, S.; Chowdhury, I. H.; Naskar, M. K. Nitrogen-doped nanoporous carbon nanospheroids for selective dye adsorption and Pb(II) ion removal from waste water. ACS Omega 2018, 3, 9888–9898.
Jain, P.; Das, S.; Chakma, B.; Goswami, P. Aptamer-graphene oxide for highly sensitive dual electrochemical detection of Plasmodium lactate dehydrogenase. Anal. Biochem. 2016, 514, 32–37.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 2008, 3, 563–568.
Tsuda, A.; Osuka, A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science 2001, 293, 79–82.
Tsuda, A.; Osuka, A. Discrete conjugated porphyrin tapes with an exceptionally small bandgap. Adv. Mater. 2002, 14, 75–79.
Sun, Q.; Mateo, L. M.; Robles, R.; Lorente, N.; Ruffieux, P.; Bottari, G.; Torres, T.; Fasel, R. Bottom–up fabrication and atomic-scale characterization of triply linked, laterally π-extended porphyrin nanotapes. Angew. Chem., Int. Ed. 2021, 60, 16208–16214.
Nayak, A.; Park, J.; De Mey, K.; Hu, X. Q.; Duncan, T. V.; Beratan, D. N.; Clays, K.; Therien, M. J. Large hyperpolarizabilities at telecommunication-relevant wavelengths in donor–acceptor–donor nonlinear optical chromophores. ACS Cent. Sci. 2016, 2, 954–966.
Rauch, F.; Krebs, J.; Günther, J.; Friedrich, A.; Hähnel, M.; Krummenacher, I.; Braunschweig, H.; Finze, M.; Marder, T. B. Electronically driven regioselective iridium-catalyzed C–H borylation of donor–π–acceptor chromophores containing triarylboron acceptors. Chem. —Eur. J. 2020, 26, 10626–10633.
Liu, L. P.; Chen, X. J.; Chai, Y. Q.; Zhang, W. N.; Liu, X. L.; Zhao, F. W.; Wang, Z.; Weng, Y. X.; Wu, B.; Geng, H. et al. Highly efficient photocatalytic hydrogen production via porphyrin-fullerene supramolecular photocatalyst with donor–acceptor structure. Chem. Eng. J. 2022, 444, 136621.
Balapanuru, J.; Yang, J. X.; Xiao, S.; Bao, Q. L.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q. H.; Loh, K. P. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem., Int. Ed. 2010, 49, 6549–6553.
Liu, K. J.; Li, J.; Qi, H. Y.; Hambsch, M.; Rawle, J.; Vázquez, A. R.; Nia, A. S.; Pashkin, A.; Schneider, H.; Polozij, M. et al. A two-dimensional polyimide–graphene heterostructure with ultra-fast interlayer charge transfer. Angew. Chem., Int. Ed. 2021, 60, 13859–13864.
Lim, G. K.; Chen, Z. L.; Clark, J.; Goh, R. G. S.; Ng, W. H.; Tan, H. W.; Friend, R. H.; Ho, P. K. H.; Chua, L. L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554–560.
Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 2009, 21, 2430–2435.
McEwan, K. J.; Fleitz, P. A.; Rogers, J. E.; Slagle, J. E.; McLean, D. G.; Akdas, H.; Katterle, M.; Blake, I. M.; Anderson, H. L. Reverse saturable absorption in the near-infrared by fused porphyrin dimers. Adv. Mater. 2004, 16, 1933–1935.
Krishna, M. B. M.; Venkatramaiah, N.; Rao, D. N. Optical transmission control in graphene oxide and its organic composites with ultrashort laser pulses. J. Opt. 2014, 16, 015205.