Journal Home > Volume 16 , Issue 4

Sodium-ion batteries (SIBs) are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium. However, due to the bigger radius, it is still a great challenge to develop anode materials with suitable space for the intercalation of sodium ions. Herein, we present hard carbon microtubes (HCTs) with tunable apertures derived from low-cost natural kapok fibers via a carbonization process for SIBs. The resulted HCTs feature with smaller surface area and shorter Na+ diffusion path benefitting from their unique micro-nano structure. Most importantly, the wall thickness of HCTs could be regulated and controlled by the carbonization temperature. At a high temperature of 1,600 °C, the carbonized HCTs possess the smallest wall thickness, which reduces the diffusion barrier of Na+ and enhances the reversibility Na+ storage. As a result, the 1600HCTs deliver a high initial Coulombic efficiency of 90%, good cycling stability (89.4% of capacity retention over 100 cycles at 100 mA·g−1), and excellent rate capacity. This work not only charts a new path for preparing hard carbon materials with adequate ion channels and novel tubular micro-nano structures but also unravels the mechanism of hard carbon materials for sodium storage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries

Show Author's information Pin Song1,2,3,§( )Shiqiang Wei4,§Jun Di5Jun Du1Wenjie Xu4Daobin Liu4Changda Wang4Sicong Qiao4Yuyang Cao4Qilong Cui4Pengjun Zhang4Liaobo Ma6Jiewu Cui3Yan Wang3Yujie Xiong1,4( )
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
National Synchrotron Radiation Laboratory, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China

§ Pin Song and Shiqiang Wei contributed equally to this work.

Abstract

Sodium-ion batteries (SIBs) are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium. However, due to the bigger radius, it is still a great challenge to develop anode materials with suitable space for the intercalation of sodium ions. Herein, we present hard carbon microtubes (HCTs) with tunable apertures derived from low-cost natural kapok fibers via a carbonization process for SIBs. The resulted HCTs feature with smaller surface area and shorter Na+ diffusion path benefitting from their unique micro-nano structure. Most importantly, the wall thickness of HCTs could be regulated and controlled by the carbonization temperature. At a high temperature of 1,600 °C, the carbonized HCTs possess the smallest wall thickness, which reduces the diffusion barrier of Na+ and enhances the reversibility Na+ storage. As a result, the 1600HCTs deliver a high initial Coulombic efficiency of 90%, good cycling stability (89.4% of capacity retention over 100 cycles at 100 mA·g−1), and excellent rate capacity. This work not only charts a new path for preparing hard carbon materials with adequate ion channels and novel tubular micro-nano structures but also unravels the mechanism of hard carbon materials for sodium storage.

Keywords: long cycle life, sodium-ion batteries (SIBs), hard carbon, kapok fibers, reversible capacity

References(57)

[1]

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

[2]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[3]

Zhu, Y. F.; Xiao, Y.; Dou, S. X.; Kang, Y. M.; Chou, S. L. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 2021, 1, 13–27.

[4]

Li, Q.; Liu, X. S.; Tao, Y.; Huang, J. X.; Zhang, J.; Yang, C. P.; Zhang, Y. B.; Zhang, S. W.; Jia, Y. R.; Lin, Q. W. et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 2022, 9, nwac084.

[5]

Wang, K. F.; Sun, F.; Wang, H.; Wu, D. Y.; Chao, Y. X.; Gao, J. H.; Zhao, G. B. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 2022, 32, 2203725.

[6]

Gu, Z. Y.; Guo, J. Z.; Cao, J. M.; Wang, X. T.; Zhao, X. X.; Zheng, X. Y.; Li, W. H.; Sun, Z. H.; Liang, H. J.; Wu, X. L. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 2022, 34, 2110108.

[7]

Peng, J.; Zhang, W.; Liu, Q. N.; Wang, J. Z.; Chou, S. L.; Liu, H. K.; Dou, S. X. Prussian blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 2022, 34, 2108384.

[8]

Zhu, Y. Y.; Chen, M. M.; Li, Q.; Yuan, C.; Wang, C. Y. High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. Carbon 2017, 123, 727–734.

[9]

Xie, F.; Xu, Z.; Jensen, A. C. S.; Au, H.; Lu, Y. X.; Araullo-Peters, V.; Drew, A. J.; Hu, Y. S.; Titirici, M. M. Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072.

[10]

Song, P.; Di, J.; Kang, L. X.; Xu, M. Z.; Tang, B. J.; Xiong, J.; Cui, J. W.; Zeng, Q. S.; Zhou, J. D.; He, Y. M. et al. Enhancing the cycling stability of Na-ion batteries by bonding MoS2 on assembled carbon-based materials. Nano Mater. Sci. 2019, 1, 310–317.

[11]

Hou, H. S.; Qiu, X. Q.; Wei, W. F.; Zhang, Y.; Ji, X. B. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1602898.

[12]

Chen, W. M.; Wan, M.; Liu, Q.; Xiong, X. Q.; Yu, F. Q.; Huang, Y. H. Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries. Small Methods 2019, 3, 1800323.

[13]

Wang, X. L.; Li, G.; Hassan, F. M.; Li, J. D.; Fan, X. Y.; Batmaz, R.; Xiao, X. C.; Chen, Z. W. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy 2015, 15, 746–754.

[14]

Wang, E. H.; Chen, M. Z.; Guo, X. D.; Chou, S. L.; Zhong, B. H.; Dou, S. X. Synthesis strategies and structural design of porous carbon-incorporated anodes for sodium-ion batteries. Small Methods 2020, 4, 1900163.

[15]

Kumaresan, T. K.; Masilamani, S. A.; Raman, K.; Karazhanov, S. Z.; Subashchandrabose, R. High performance sodium-ion battery anode using biomass derived hard carbon with engineered defective sites. Electrochim. Acta 2021, 368, 137574.

[16]

Yu, K. H.; Wang, X. R.; Yang, H. Y.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2021, 55, 499–508.

[17]

Pan, H. L.; Lu, X.; Yu, X. Q.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 1186–1194.

[18]

Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870.

[19]

Zhao, L.; Zhao, J. M.; Hu, Y. S.; Li, H.; Zhou, Z. B.; Armand, M.; Chen, L. Q. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2012, 2, 962–965.

[20]

Zhang, J. Y.; Li, M.; Kang, Z. W.; Xiao, B. S.; Lin, H. C.; Lu, J. Y.; Liu, H. D.; Zhang, X.; Peng, D. L.; Zhang, Q. B. Atomic mechanisms of hexagonal close-packed Ni nanocrystallization revealed by in situ liquid cell transmission electron microscopy. Nano Res. 2022, 15, 6772–6778.

[21]

Cai, M. T.; Zhang, H. H.; Zhang, Y. G.; Xiao, B. S.; Wang, L.; Li, M.; Wu, Y.; Sa, B. S.; Liao, H. G.; Zhang, L. et al. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci. Bull. 2022, 67, 933–945.

[22]

Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.

[23]

Ke, C. Z.; Shao, R. W.; Zhang, Y. G.; Sun, Z. F.; Qi, S.; Zhang, H. H.; Li, M.; Chen, Z. L.; Wang, Y. S.; Sa, B. S. et al. Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv. Funct. Mater. 2022, 32, 2205635.

[24]

Kalisvaart, W. P.; Olsen, B. C.; Luber, E. J.; Buriak, J. M. Sb-Si alloys and multilayers for sodium-ion battery anodes. ACS Appl. Energy Mater. 2019, 2, 2205–2213.

[25]

Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622.

[26]

Tomboc, G. M.; Wang, Y. T.; Wang, H.; Li, J. H.; Lee, K. Sn-based metal oxides and sulfides anode materials for Na ion battery. Energy Stor. Mater. 2021, 39, 21–44.

[27]

Ying, H. J.; Han, W. Q. Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 2017, 4, 1700298.

[28]

Ma, W. S.; Yin, K. B.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy 2018, 54, 349–359.

[29]

Yu, X. Q.; Pan, H. L.; Wan, W.; Ma, C.; Bai, J. M.; Meng, Q. P.; Ehrlich, S. N.; Hu, Y. S.; Yang, X. Q. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. Nano Lett. 2013, 13, 4721–4727.

[30]

Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

[31]

Wu, X. Y.; Ma, J.; Ma, Q. D.; Xu, S. Y.; Hu, Y. S.; Sun, Y.; Li, H.; Chen, L. Q.; Huang, X. J. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 13193–13197.

[32]

Stevensa, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

[33]

Doeff, M. M.; Ma, Y. P.; Visco, S. J.; De Jonghe, L. C. Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 1993, 140, L169–L170.

[34]

Izanzar, I.; Dahbi, M.; Kiso, M.; Doubaji, S.; Komaba, S.; Saadoune, I. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon 2018, 137, 165–173.

[35]

Xiao, L. F.; Cao, Y. L.; Henderson, W. A.; Sushko, M. L.; Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M. H.; Nie, Z. M.; Liu, J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279–288.

[36]

Chen, X. L.; Zheng, Y. H.; Liu, W. J.; Zhang, C.; Li, S.; Li, J. High-performance sodium-ion batteries with a hard carbon anode: Transition from the half-cell to full-cell perspective. Nanoscale 2019, 11, 22196–22205.

[37]

Shen, L. Y.; Shi, S. S.; Roy, S.; Yin, X. P.; Liu, W. B.; Zhao, Y. F. Recent advances and optimization strategies on the electrolytes for hard carbon and P-based sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2006066.

[38]

Liang, J. L.; Wu, W. W.; Xu, L.; Wu, X. H. Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton. Carbon 2021, 176, 219–227.

[39]

Chen, D. Q.; Zhang, W.; Luo, K. Y.; Song, Y.; Zhong, Y. J.; Liu, Y. X.; Wang, G. K.; Zhong, B. H.; Wu, Z. G.; Guo, X. D. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 2021, 14, 2244–2262.

[40]

Schutjajew, K.; Tichter, T.; Schneider, J.; Antonietti, M.; Roth, C.; Oschatz, M. Insights into the sodiation mechanism of hard carbon-like materials from electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 2021, 23, 11488–11500.

[41]

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

[42]

Zou, L. L.; Kitta, M.; Hong, J. H.; Suenaga, K.; Tsumori, N.; Liu, Z.; Xu, Q. Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 2019, 31, 1900440.

[43]

Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

[44]

Zhao, L. N.; Zhao, H. L.; Wang, J.; Zhang, Y.; Li, Z. L.; Du, Z. H.; Świerczek, K.; Hou, Y. L. Micro/nano Na3V2(PO4)3/N-doped carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance. ACS Appl. Mater. Interfaces 2021, 13, 8445–8454.

[45]

Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

[46]

Yu, Z. E.; Lyu, Y. C.; Wang, Y. T.; Xu, S. Y.; Cheng, H. Y.; Mu, X. Y.; Chu, J. Q.; Chen, R. M.; Liu, Y.; Guo, B. K. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem. Commun. 2020, 56, 778–781.

[47]

Chen, D. Q.; Luo, K. Y.; Yang, Z. W.; Zhong, Y. J.; Wu, Z. G.; Song, Y.; Chen, G.; Wang, G. K.; Zhong, B. H.; Guo, X. D. Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage. Carbon 2021, 173, 253–261.

[48]

Ma, Q. L.; Yu, Y. F.; Sindoro, M.; Fane, A. G.; Wang, R.; Zhang, H. Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 2017, 29, 1605361.

[49]

Li, Y. M.; Hu, Y. S.; Titirici, M. M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

[50]

Shultz, J. M.; Walsh, L.; Garfin, D. R.; Wilson, F. E.; Neria, Y. The 2010 Deepwater Horizon oil spill: The trauma signature of an ecological disaster. J. Behav. Health. Serv. Res. 2015, 42, 58–76.

[51]

Song, P.; Cui, J. W.; Di, J.; Liu, D. B.; Xu, M. Z.; Tang, B. J.; Zeng, Q. S.; Xiong, J.; Wang, C. D.; He, Q. et al. Carbon microtube aerogel derived from kapok fiber: An efficient and recyclable sorbent for oils and organic solvents. ACS Nano 2020, 14, 595–602.

[52]

Ding, J.; Wang, H. L.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X. H.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941–955.

[53]

Park, Y. S.; Choi, Y. C.; Kim, K. S.; Chung, D. C.; Bae, D. J.; An, K. H.; Lim, S. C.; Zhu, X. Y.; Leea, Y. H. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 2001, 39, 655–661.

[54]

Roldán, L.; Santos, I.; Armenise, S.; Fraile, J. M.; García-Bordejé, E. The formation of a hydrothermal carbon coating on graphite microfiber felts for using as structured acid catalyst. Carbon 2012, 50, 1363–1372.

[55]

Feng, X. F.; Song, M. K.; Stolte, W. C.; Gardenghi, D.; Zhang, D.; Sun, X. H.; Zhu, J. F.; Cairns, E. J.; Guo, J. H. Understanding the degradation mechanism of rechargeable lithium/sulfur cells: A comprehensive study of the sulfur-graphene oxide cathode after discharge–charge cycling. Phys. Chem. Chem. Phys. 2014, 16, 16931–16940.

[56]

Kuznetsova, A.; Popova, I.; Yates, J. T. Jr.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 2001, 123, 10699–10704.

[57]

Li, Y. Q.; Lu, Y. X.; Meng, Q. S.; Jensen, A. C. S.; Zhang, Q. Q.; Zhang, Q. H.; Tong, Y. X.; Qi, Y. R.; Gu, L.; Titirici, M. M. et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 2019, 9, 1902852.

File
12274_2022_5154_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2022
Revised: 22 September 2022
Accepted: 06 October 2022
Published: 12 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Research Project for Universities in Anhui Province (No. KJ2021ZD0006), the Natural Science Foundation of Anhui Province (No. 2208085MB21), the Fundamental Research Funds for the Central Universities of China (No. PA2022GDSK0056), the University Synergy Innovation Program of Anhui Province (Nos. GXXT-2020-073 and GXXT-2020-074), the National Key R&D Program of China (No. 2020YFA0406103), the National Natural Science Foundation of China (Nos. 21725102, 91961106, 91963108, and 22175165), and Singapore National Research Foundation under NRF RF Award No. Tier 1 2017-T1-001-075. We are very grateful to Professor Zheng Liu form Nanyang Technological University for his support.

Return