Journal Home > Volume 16 , Issue 4

High efficient lead halide perovskites with wide-color gamut properties have emerged as new candidates for backlight displays. However, the toxicity of lead and the instability of halide perovskites greatly limit their practical applications. Herein, the luminescent powders of [(CH3)4N]2MnBr4 and [(CH3)4N]MnBr3 were synthesized via a simple yet robust solvent evaporation method. [(CH3)4N]2MnBr4 with tetrahedral coordination Mn2+ and [(CH3)4N]MnBr3 with octahedral coordination Mn2+ show green at 517 nm and red emission peaks at 620 nm, respectively, originating from the 4T1-6A1 transition of Mn2+. To enhance optical of manganese halide via effective alloying, Zn2+-doped [(CH3)4N]2MnBr4 was successfully prepared, and the quantum efficiency of [(CH3)4N]2Mn0.6Zn0.4Br4 was as high as 65%. Furthermore, [(CH3)4N]2Mn0.6Zn0.4Br4 exhibits better optical and thermal stability compared to [(CH3)4N]2MnBr4. [(CH3)4N]2Mn0.6Zn0.4Br4@CsPbBr1.2I1.8 light conversion films with different green-to-red ratios are placed in backlight display devices, and their color gamut exceeds 106% of the National Television Standards Committee (NTSC) 1953 standard, which is superior to the currently reported Mn-based perovskite. This work broadly shows that the [(CH3)4N]2Mn0.6Zn0.4Br4 will provide effective route to fabricate stable and high-performance lead-free liquid crystal displays.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

[(CH3)4N]2Mn0.6Zn0.4Br4: Lead-free MnII-based hybrid halide with high photoluminescence quantum yield for backlight displays

Show Author's information Xiaoting Liu1Jiapeng Yang1Wenya Chen2Fan Yang2Yihuang Chen1Xiaojuan Liang1( )Shuang Pan1( )Weidong Xiang1( )
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China

Abstract

High efficient lead halide perovskites with wide-color gamut properties have emerged as new candidates for backlight displays. However, the toxicity of lead and the instability of halide perovskites greatly limit their practical applications. Herein, the luminescent powders of [(CH3)4N]2MnBr4 and [(CH3)4N]MnBr3 were synthesized via a simple yet robust solvent evaporation method. [(CH3)4N]2MnBr4 with tetrahedral coordination Mn2+ and [(CH3)4N]MnBr3 with octahedral coordination Mn2+ show green at 517 nm and red emission peaks at 620 nm, respectively, originating from the 4T1-6A1 transition of Mn2+. To enhance optical of manganese halide via effective alloying, Zn2+-doped [(CH3)4N]2MnBr4 was successfully prepared, and the quantum efficiency of [(CH3)4N]2Mn0.6Zn0.4Br4 was as high as 65%. Furthermore, [(CH3)4N]2Mn0.6Zn0.4Br4 exhibits better optical and thermal stability compared to [(CH3)4N]2MnBr4. [(CH3)4N]2Mn0.6Zn0.4Br4@CsPbBr1.2I1.8 light conversion films with different green-to-red ratios are placed in backlight display devices, and their color gamut exceeds 106% of the National Television Standards Committee (NTSC) 1953 standard, which is superior to the currently reported Mn-based perovskite. This work broadly shows that the [(CH3)4N]2Mn0.6Zn0.4Br4 will provide effective route to fabricate stable and high-performance lead-free liquid crystal displays.

Keywords: stability, [(CH3)4N]MnBr3, [(CH3)4N]2Mn0.6Zn0.4Br4, Zn/Mn alloying, backlight display

References(34)

[1]

Zhang, X. J.; Wang, H. C.; Tang, A. C.; Lin, S. Y.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Robust and stable narrow-band green emitter: An option for advanced wide-color-gamut backlight display. Chem. Mater. 2016, 28, 8493–8497.

[2]

Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972.

[3]

Dutta, A.; Behera, R. K.; Pal, P.; Baitalik, S.; Pradhan, N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew. Chem., Int. Ed. 2019, 58, 5552–5556.

[4]

Shen, X. Y.; Wang, S. X.; Zhang, X. T.; Wang, H.; Zhang, X. Y.; Wang, C. C.; Gao, Y. B.; Shi, Z. F.; Yu, W. W.; Zhang, Y. Enhancing the efficiency of CsPbX3 (X = Cl, Br, I) nanocrystals via simultaneous surface peeling and surface passivation. Nanoscale 2019, 11, 11464–11469.

[5]

Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080.

[6]

Zhang, Q. G.; Sun, X. C.; Zheng, W. L.; Wan, Q.; Liu, M. M.; Liao, X. R.; Hagio, T.; Ichino, R.; Kong, L.; Wang, H. M. et al. Band gap engineering toward wavelength tunable CsPbBr3 nanocrystals for achieving Rec. 2020 displays. Chem. Mater. 2021, 33, 3575–3584.

[7]

Zhang, W. Y.; Thapa, S.; Sun, Y.; Norville, S.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F.; Qin, W. P. Substitution of Pb with Mn2+/Nd3+ to improve the luminescence and thermal stability of Cs4PbBr6. Chem. Eng. J. 2021, 423, 130186.

[8]

Lin, J. D.; Lu, Y. X.; Li, X. Y.; Huang, F.; Yang, C. B.; Liu, M. L.; Jiang, N. Z.; Chen, D. Q. Perovskite quantum dots glasses based backlit displays. ACS Energy Lett., 2021, 6, 519–528.

[9]

Swarnkar, A.; Ravi, V. K.; Nag, A. Beyond colloidal cesium lead halide perovskite nanocrystals: Analogous metal halides and doping. ACS Energy Lett., 2017, 2, 1089–1098.

[10]

Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.

[11]

Wang, A. F.; Guo, Y. Y.; Zhou, Z. B.; Niu, X. H.; Wang, Y. G.; Muhammad, F.; Li, H. B.; Zhang, T.; Wang, J. L.; Nie, S. M. et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency. Chem. Sci. 2019, 10, 4573–4579.

[12]

Qin, Y. Y.; She, P. F.; Huang, X. M.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331.

[13]

Zhu, D. X.; Zaffalon, M. L.; Pinchetti, V.; Brescia, R.; Moro, F.; Fasoli, M.; Fanciulli, M.; Tang, A. W.; Infante, I.; De Trizio, L. et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals. Chem. Mater. 2020, 32, 5897–5903.

[14]

Noculak, A.; Morad, V.; McCall, K. M.; Yakunin, S.; Shynkarenko, Y.; Wörle, M.; Kovalenko, M. V. Bright blue and green luminescence of Sb(III) in Double perovskite Cs2MInCl6 (M = Na, K) matrices. Chem. Mater. 2020, 32, 5118–5124.

[15]

Zeng, R. S.; Zhang, L. L.; Xue, Y.; Ke, B.; Zhao, Z.; Huang, D.; Wei, Q. L.; Zhou, W. C.; Zou, B. S. Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 2053–2061.

[16]

Chen, N.; Cai, T.; Li, W. H.; Hills-Kimball, K.; Yang, H. J.; Que, M. D.; Nagaoka, Y.; Liu, Z. Y.; Yang, D.; Dong, A. G. et al. Yb- and Mn-doped lead-free double perovskite Cs2AgBiX6 (X = Cl, Br) nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 16855–16863.

[17]

K, N. N.; Nag, A. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites. Chem. Commun. 2018, 54, 5205–5208.

[18]

Sun, Q.; Wang, S. P.; Zhao, C. Y.; Leng, J.; Tian, W. M.; Jin, S. Y. Excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089–20096.

[19]

Mir, W. J.; Jagadeeswararao, M.; Das, S.; Nag, A. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets. ACS Energy Lett. 2017, 2, 537–543.

[20]

Li, C. Y.; Bai, X. W.; Guo, Y. C.; Zou, B. S. Tunable emission properties of manganese chloride small single crystals by pyridine incorporation. ACS Omega 2019, 4, 8039–8045.

[21]

Zhang, Y.; Liao, W. Q.; Fu, D. W.; Ye, H. Y.; Liu, C. M.; Chen, Z. N.; Xiong, R. G. The first organic–inorganic hybrid luminescent multiferroic: (Pyrrolidinium)MnBr3. Adv. Mater. 2015, 27, 3942–3946.

[22]

Bai, X. W.; Zhong, H. Z.; Chen, B. K.; Chen, C.; Han, J. B.; Zeng, R. S.; Zou, B. S. Pyridine-modulated Mn ion emission properties of C10H12N2MnBr4 and C5H6NMnBr3 single crystals. J. Phys. Chem. C 2018, 122, 3130–3137.

[23]

Su, B. B.; Molokeev, M. S.; Xia, Z. G. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying. J. Mater. Chem. C 2019, 7, 11220–11226.

[24]

Zhou, G. J.; Liu, Z. Y.; Huang, J. L.; Molokeev, M. S.; Xiao, Z. W.; Ma, C. G.; Xia, Z. G. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: A case study of (C10H16N)2Zn1−xMnxBr4 solid solutions. J. Phys. Chem. Lett. 2020, 11, 5956–5962.

[25]

Almutlaq, J.; Mir, W. J.; Gutiérrez-Arzaluz, L.; Yin, J.; Vasylevskyi, S.; Maity, P.; Liu, J. K.; Naphade, R.; Mohammed, O. F.; Bakr, O. M. CsMnBr3: Lead-free nanocrystals with high photoluminescence quantum yield and picosecond radiative lifetime. ACS Mater. Lett. 2021, 3, 290–297.

[26]

Koshiji, N.; Mashiyama, H. Disordered and displacive models for the structure of the normal phase in {N(CH3)4}2MnCl4. J. Phys. Soc. Jpn. 2000, 12, 3853–3859.

[27]

Hu, G. C.; Xu, B.; Wang, A. F.; Guo, Y.; Wu, J. J.; Muhammad, F.; Meng, W.; Wang, C. Y.; Sui, S.; Liu, Y. et al. Stable and bright pyridine manganese halides for efficient white light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2011191.

[28]

Lin, J.; Zhang, Q.; Wang, L.; Liu, X. C.; Yan, W. B.; Wu, T.; Bu, X. H.; Feng, P. Y. Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission. J. Am. Chem. Soc. 2014, 136, 4769–4779.

[29]

Orive, J.; Mesa, J. L.; Balda, R.; Fernández, J.; Fernández, J. R.; Rojo, T.; Arriortua, M. I. Enhancement of the luminescent properties of a new red-emitting phosphor, Mn2(HPO3)F2, by Zn substitution. Inorg. Chem. 2011, 50, 12463–12476.

[30]

Chen, W. Y.; He, Q. Y.; He, Z. Y.; Wang, Q.; Ding, J.; Huang, Q.; Liang, X. J.; Chen, Z. P.; Xiang, W. D. Environmental-friendly Cs3MnxZn(1−x)Br5@PS films used for wide color gamut backlight displays. ACS Sustainable Chem. Eng. 2022, 10, 5333–5340.

[31]

Shao, L.; Zhou, D. L.; Ding, N.; Sun, R.; Xu, W.; Wang, N.; Xu, S. H.; Liu, D. L.; Song, H. W. Broadband ultraviolet photodetectors based on cerium doped lead-free Cs3MnBr5 metal halide nanocrystals. ACS Sustainable Chem. Eng. 2021, 9, 4980–4987.

[32]

Wang, S. Y.; Han, X. X.; Kou, T. T.; Zhou, Y. Y.; Liang, Y.; Wu, Z. X.; Huang, J. L.; Chang, T.; Peng, C. Y.; Wei, Q. L. et al. Lead-free MnII-based red-emitting hybrid halide (CH6N3)2MnCl4 toward high performance warm WLEDs. J. Mater. Chem. C 2021, 9, 4895–4902.

[33]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[34]

Zhu, Y. L.; Liang, Y. J.; Liu, S. Q.; Li, H. R.; Chen, J. H. Narrow-band green-emitting Sr2MgAl22O36: Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications. Adv. Opt. Mater. 2019, 7, 1801419.

File
12274_2022_5152_MOESM1_ESM.pdf (597.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 August 2022
Revised: 17 September 2022
Accepted: 04 October 2022
Published: 18 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872207 and 52072271).

Return