Journal Home > Volume 16 , Issue 4

With the widespread prevailing of flexible electronics in human–machine interfaces, health monitor, and human motion detection, ultrasoft flexible sensors are urgently desired with critical demands in conformality. Herein, a temperature-sensitive ionogel with near-infrared (NIR)-light controlled adhesion is prepared by electrostatic interaction of poly(diallyl dimethylammonium chloride) (PDDA) and acrylic acid, as well as the incorporation of the conductive polydopamine modified polypyrrole nanoparticles (PPy-PDA NPs). The PPy-PDA NPs could weaken the tough interaction between polymer chains and depress the Young’s modulus of the ionogel, thus promoting the ionogel ultrasoft (34 kPa) and highly stretchable (1,013%) performance to tensile deformations. In addition, the high photothermal conversion capacity of PPy-PDA NPs ensured the ionogel excellent NIR-light controlled adhesion and temperature sensitivity, which facilitated the ionogel on-demand removal and promised a reliable thermal sensor. Moreover, the resulted ultrasoft flexible sensor exhibited high sensitivity and stability to both strain and pressure in a broad range of deformations, enabling a precise monitoring on various human motions and physiological activities. The temperature-sensitive, ultrasoft, and controlled adhesive capabilities prompted great potential of the flexible ionogel in medical diagnosis and wearable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermal-sensitive ionogel with NIR-light controlled adhesion for ultrasoft strain sensor

Show Author's information Bing Lei1Longxue Cao1Xinyu Qu2Yunlong Liu1Jinjun Shao2Qian Wang2( )Shuhong Li1( )Wenjun Wang1Xiaochen Dong2,3( )
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China

Abstract

With the widespread prevailing of flexible electronics in human–machine interfaces, health monitor, and human motion detection, ultrasoft flexible sensors are urgently desired with critical demands in conformality. Herein, a temperature-sensitive ionogel with near-infrared (NIR)-light controlled adhesion is prepared by electrostatic interaction of poly(diallyl dimethylammonium chloride) (PDDA) and acrylic acid, as well as the incorporation of the conductive polydopamine modified polypyrrole nanoparticles (PPy-PDA NPs). The PPy-PDA NPs could weaken the tough interaction between polymer chains and depress the Young’s modulus of the ionogel, thus promoting the ionogel ultrasoft (34 kPa) and highly stretchable (1,013%) performance to tensile deformations. In addition, the high photothermal conversion capacity of PPy-PDA NPs ensured the ionogel excellent NIR-light controlled adhesion and temperature sensitivity, which facilitated the ionogel on-demand removal and promised a reliable thermal sensor. Moreover, the resulted ultrasoft flexible sensor exhibited high sensitivity and stability to both strain and pressure in a broad range of deformations, enabling a precise monitoring on various human motions and physiological activities. The temperature-sensitive, ultrasoft, and controlled adhesive capabilities prompted great potential of the flexible ionogel in medical diagnosis and wearable electronics.

Keywords: photothermal effect, temperature-sensitive, flexible sensor, ultrasoft, controllable adhesion

References(40)

[1]

Gerratt, A. P.; Michaud, H. O.; Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 2015, 25, 2287–2295.

[2]

Su, G. H.; Cao, J.; Zhang, X. Q.; Zhang, Y. L.; Yin, S. Y.; Jia, L. Y.; Guo, Q. Q.; Zhang, X. X.; Zhang, J. H.; Zhou, T. Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. J. Mater. Chem. A 2020, 8, 2074–2082.

[3]

Hu, W. P.; Zhang, H.; Salaita, K.; Sirringhaus, H. SmartMat : Smart materials to smart world. SmartMat 2020, 1, e1014.

[4]

Xia, K. L.; Chen, X. Y.; Shen, X. Y.; Li, S.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Carbonized Chinese art paper-based high-performance wearable strain sensor for human activity monitoring. ACS Appl. Electron. Mater. 2019, 1, 2415–2421.

[5]

Wang, C. Y.; Xia, K. L.; Jian, M. Q.; Wang, H. M.; Zhang, M. C.; Zhang, Y. Y. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604–7611.

[6]

Luan, H. X.; Zhang, D. Z.; Xu, Z. Y.; Zhao, W. H.; Yang, C. Q.; Chen, X. Y. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. J. Mater. Chem. C 2022, 10, 7604–7613.

[7]

Zhao, W.; Qu, X. Y.; Xu, Q.; Lu, Y.; Yuan, W.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels. Adv. Electron. Mater. 2020, 6, 2000267.

[8]

Yu, Q. Y.; Qin, Z. H.; Ji, F.; Chen, S.; Luo, S. Y.; Yao, M. M.; Wu, X. J.; Liu, W. W.; Sun, X.; Zhang, H. T. et al. Low-temperature tolerant strain sensors based on triple crosslinked organohydrogels with ultrastretchability. Chem. Eng. J. 2021, 404, 126559.

[9]

Wu, Z. X.; Ding, H. J.; Tao, K.; Wei, Y. M.; Gui, X. C.; Shi, W. X.; Xie, X.; Wu, J. Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 2021, 13, 21854–21864.

[10]

Yuan, W.; Qu, X. Y.; Lu, Y.; Zhao, W.; Ren, Y. F.; Wang, Q.; Wang, W. J.; Dong, X. C. MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chin. Chem. Lett. 2021, 32, 2021–2026.

[11]

Huang, J. R.; Peng, S. J.; Gu, J. F.; Chen, G. Q.; Gao, J. H.; Zhang, J.; Hou, L. X.; Yang, X. X.; Jiang, X. C.; Guan, L. H. Correction: Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 2020, 7, 2768–2769.

[12]

Xu, J. J.; Jing, R. N.; Ren, X. Y.; Gao, G. H. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness. J. Mater. Chem. A 2020, 8, 9373–9381.

[13]

Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J. et al. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184–211.

[14]

Zhang, X. F.; Ma, X. F.; Hou, T.; Guo, K. C.; Yin, J. Y.; Wang, Z. G.; Shu, L.; He, M.; Yao, J. F. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem., Int. Ed. 2019, 58, 7366–7370.

[15]

Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, stable, and durable strain sensors based on double-network organogels. ACS Appl. Mater. Interfaces 2018, 10, 32640–32648.

[16]

Han, S. J.; Liu, C. R.; Lin, X. Y.; Zheng, J. W.; Wu, J.; Liu, C. Dual conductive network hydrogel for a highly conductive, self-healing, anti-freezing, and non-drying strain sensor. ACS Appl. Polym. Mater. 2020, 2, 996–1005.

[17]

Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.

[18]

Li, T. Q.; Wang, Y. T.; Li, S. H.; Liu, X. K.; Sun, J. Q. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 2020, 32, 2002706.

[19]

Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.

[20]

Zhao, X. L.; Zhou, K. L.; Zhong, Y. J.; Liu, P.; Li, Z. C.; Pan, J. L.; Long, Y.; Huang, M. R.; Brakat, A.; Zhu, H. W. Hydrophobic ionic liquid-in-polymer composites for ultrafast, linear response and highly sensitive humidity sensing. Nano Res. 2021, 14, 1202–1209.

[21]

Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.

[22]

Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

[23]

Strümpler, R.; Glatz-Reichenbach, J. FEATURE ARTICLE conducting polymer composites. J Electroceram. 1999, 3, 329–346.

[24]

Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015, 5, 37553–37567.

[25]

Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

[26]

Krogsgaard, M.; Nue, V.; Birkedal, H. Mussel-inspired materials: Self-healing through coordination chemistry. Chem.—Eur. J. 2016, 22, 844–857.

[27]

Mrówczyński, R.; Markiewicz, R.; Liebscher, J. Chemistry of polydopamine analogues. Polym. Int. 2016, 65, 1288–1299.

[28]

Zhang, W.; Pan, Z. H.; Yang, F. K.; Zhao, B. X. A facile in situ approach to polypyrrole functionalization through bioinspired catechols. Adv. Funct. Mater. 2015, 25, 1588–1597.

[29]

Duan, J. J.; Xie, W. K.; Yang, P. H.; Li, J.; Xue, G. B.; Chen, Q.; Yu, B. Y.; Liu, R.; Zhou, J. Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries. Nano Energy 2018, 48, 569–574.

[30]

Feng, L.; Shi, W. B.; Chen, Q.; Cheng, H. T.; Bao, J. X.; Jiang, C. J.; Zhao, W. F.; Zhao, C. S. Smart asymmetric hydrogel with integrated multi-functions of NIR-triggered tunable adhesion, self-deformation, and bacterial eradication. Adv. Healthc. Mater. 2021, 10, 2100784.

[31]

Nam, H. G.; Nam, M. G.; Yoo, P. J.; Kim, J. H. Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid. Soft Matter 2019, 15, 785–791.

[32]

Chen, Q.; Feng, L.; Cheng, H. T.; Wang, Y. L.; Wu, H.; Xu, T.; Zhao, W. F.; Zhao, C. S. Mussel-inspired ultra-stretchable, universally sticky, and highly conductive nanocomposite hydrogels. J. Mater. Chem. B 2021, 9, 2221–2232.

[33]

Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

[34]

Schmidt, H.; Stephan, M.; Safarov, J.; Kul, I.; Nocke, J.; Abdulagatov, I. M.; Hassel, E. Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate. J. Chem. Thermodyn. 2012, 47, 68–75.

[35]

Marcelo, G.; Tarazona, M. P.; Saiz, E. Solution properties of poly(diallyldimethylammonium chloride) (PDDA). Polymer 2005, 46, 2584–2594.

[36]

Zhang, X. L.; Peng, Y. J.; Wang, X. Y.; Ran, R. Melanin-inspired conductive hydrogel sensors with ultrahigh stretchable, self-healing, and photothermal capacities. ACS Appl. Polym. Mater. 2021, 3, 1899–1911.

[37]

Wei, D. L.; Zhu, J. Q.; Luo, L. C.; Huang, H. B.; Li, L.; Yu, X. H. Ultra-stretchable, fast self-healing, conductive hydrogels for writing circuits and magnetic sensors. Polym. Int. 2022, 71, 837–846.

[38]

Wu, F.; Chen, N.; Chen, R. J.; Zhu, Q. Z.; Tan, G. Q.; Li, L. Self-regulative nanogelator solid electrolyte: A new option to improve the safety of lithium battery. Adv. Sci. 2016, 3, 1500306.

[39]

Lu, Y.; Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Ren, Y. F.; Zhao, W. L.; Wang, Q.; Sun, C. C.; Wang, W. J.; Dong, X. C. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.

[40]

Ma, L. L.; Wang, J. X.; He, J. M.; Yao, Y. L.; Zhu, X. D.; Peng, L.; Yang, J.; Liu, X. R.; Qu, M. N. Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing. J. Mater. Chem. A 2021, 9, 26949–26962.

File
12274_2022_5151_MOESM1_ESM.pdf (648.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 August 2022
Revised: 01 October 2022
Accepted: 07 October 2022
Published: 14 January 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Key Research and Development Program of China (No. 2020YFA0709900), the National Natural Science Foundation of China (No. 61775089), the Natural Science Foundation of Shandong Province (No. ZR2020KB018), and “Taishan scholars” construction special fund of Shandong Province.

Return