Journal Home > Volume 16 , Issue 3

With research burgeoning in nanoscience and nanotechnology, there is an urgent need to develop new biological models that can simulate native structure, function, and genetic properties of tissues to evaluate the adverse or beneficial effects of nanomaterials on a host. Among the current biological models, three-dimensional (3D) organoids have developed as powerful tools in the study of nanomaterial–biology (nano–bio) interactions, since these models can overcome many of the limitations of cell and animal models. A deep understanding of organoid techniques will facilitate the development of more efficient nanomedicines and further the fields of tissue engineering and personalized medicine. Herein, we summarize the recent progress in intestinal organoids culture systems with a focus on our understanding of the nature and influencing factors of intestinal organoid growth. We also discuss biomimetic extracellular matrices (ECMs) coupled with nanotechnology. In particular, we analyze the application prospects for intestinal organoids in investigating nano–intestine interactions. By integrating nanotechnology and organoid technology, this recently developed model will fill the gaps left due to the deficiencies of traditional cell and animal models, thus accelerating both our understanding of intestine-related nanotoxicity and the development of nanomedicines.


menu
Abstract
Full text
Outline
About this article

Advancing intestinal organoid technology to decipher nano–intestine interactions and treat intestinal disease

Show Author's information Lin Bao1,3Xuejing Cui1,2( )Ru Bai1Chunying Chen1,2,3( )
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With research burgeoning in nanoscience and nanotechnology, there is an urgent need to develop new biological models that can simulate native structure, function, and genetic properties of tissues to evaluate the adverse or beneficial effects of nanomaterials on a host. Among the current biological models, three-dimensional (3D) organoids have developed as powerful tools in the study of nanomaterial–biology (nano–bio) interactions, since these models can overcome many of the limitations of cell and animal models. A deep understanding of organoid techniques will facilitate the development of more efficient nanomedicines and further the fields of tissue engineering and personalized medicine. Herein, we summarize the recent progress in intestinal organoids culture systems with a focus on our understanding of the nature and influencing factors of intestinal organoid growth. We also discuss biomimetic extracellular matrices (ECMs) coupled with nanotechnology. In particular, we analyze the application prospects for intestinal organoids in investigating nano–intestine interactions. By integrating nanotechnology and organoid technology, this recently developed model will fill the gaps left due to the deficiencies of traditional cell and animal models, thus accelerating both our understanding of intestine-related nanotoxicity and the development of nanomedicines.

Keywords: intestinal organoid, biomimetic extracellular matrices (ECMs), intestinal tissue engineering, nano–intestine interaction

References(135)

[1]

Zhao, H.; Xu, J. B.; Huang, W. J.; Zhan, G. T.; Zhao, Y. B.; Chen, H. B.; Yang, X. L. Spatiotemporally light-activatable platinum nanocomplexes for selective and cooperative cancer therapy. ACS Nano 2019, 13, 6647–6661.

[2]

Zhao, H.; Xu, J. B.; Wang, Y. Q.; Sun, C. Y.; Bao, L.; Zhao, Y. B.; Yang, X. L.; Zhao, Y. L. A photosensitizer discretely loaded nanoaggregate with robust photodynamic effect for local treatment triggers systemic antitumor responses. ACS Nano 2022, 16, 3070–3080.

[3]

Wu, J. G.; Cui, X. J.; Ke, P. C.; Mortimer, M.; Wang, X. Y.; Bao, L.; Chen, C. Y. Nanomaterials as novel agents for amelioration of Parkinson’s disease. Nano Today 2021, 41, 101328.

[4]

Zhao, H.; Wang, Y. Q.; Bao, L.; Chen, C. Y. Engineering nano–bio interfaces from nanomaterials to nanomedicines. Acc. Mater. Res. 2022, 3, 812–829.

[5]

Zhao, H.; Xu, J. B.; Wan, J. S.; Huang, W. J.; Zhao, Y. B.; Yang, X. L. A versatile strategy for improving phototherapeutic efficacy on deep-sited tumor by tissue optical clearing technique. Nano Today 2021, 36, 101058.

[6]

Chen, H. Q.; Wang, B.; Gao, D.; Guan, M.; Zheng, L. N.; Ouyang, H.; Chai, Z. F.; Zhao, Y. L.; Feng, W. Y. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 2013, 9, 2735–2746.

[7]

Valsami-Jones, E.; Lynch, I. How safe are nanomaterials? Science 2015, 350, 388–389.

[8]

Wu, Y.; Sun, M. H.; Wang, D.; Li, G. Y.; Huang, J. G.; Tan, S. W.; Bao, L.; Li, Q.; Li, G.; Si, L. Q. A PepT1 mediated medicinal nano-system for targeted delivery of cyclosporine A to alleviate acute severe ulcerative colitis. Biomater. Sci. 2019, 7, 4299–4309.

[9]

Cui, X. J.; Bao, L.; Wang, X. Y.; Chen, C. Y. The nano–intestine interaction: Understanding the location-oriented effects of engineered nanomaterials in the intestine. Small 2020, 16, 1907665.

[10]

Bao, L.; Cui, X. J.; Wang, X. Y.; Wu, J. G.; Guo, M. Y.; Yan, N.; Chen, C. Y. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism. ACS Nano 2021, 15, 15858–15873.

[11]

Clevers, H. Modeling development and disease with organoids. Cell 2016, 165, 1586–1597.

[12]

Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418.

[13]

Fatehullah, A.; Tan, S. H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 2016, 18, 246–254.

[14]

Davoudi, Z.; Peroutka-Bigus, N.; Bellaire, B.; Wannemuehler, M.; Barrett, T. A.; Narasimhan, B.; Wang, Q. Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J. Biomed. Mater. Res., Part A 2018, 106, 876–886.

[15]

Capeling, M. M.; Czerwinski, M.; Huang, S.; Tsai, Y. H.; Wu, A.; Nagy, M. S.; Juliar, B.; Sundaram, N.; Song, Y.; Han, W. M. et al. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep. 2019, 12, 381–394.

[16]

Sato, T.; Vries, R. G.; Snippert, H. J.; van de Wetering, M.; Barker, N.; Stange, D. E.; van Es, J. H.; Abo, A.; Kujala, P.; Peters, P. J. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265.

[17]

Li, M.; Izpisua Belmonte, J. C. Organoids-preclinical models of human disease. N. Engl. J. Med. 2019, 380, 569–579.

[18]

Ballard, D. H.; Boyer, C. J.; Alexander, J. S. Organoids-preclinical models of human disease. N. Engl. J. Med. 2019, 380, 1981–1982.

[19]

Sato, T.; Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: Mechanism and applications. Science 2013, 340, 1190–1194.

[20]

Sato, T.; Stange, D. E.; Ferrante, M.; Vries, R. G. J.; van Es, J. H.; van den Brink, S.; van Houdt, W. J.; Pronk, A.; van Gorp, J.; Siersema, P. D. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011, 141, 1762–1772.

[21]

Spence, J. R.; Mayhew, C. N.; Rankin, S. A.; Kuhar, M. F.; Vallance, J. E.; Tolle, K.; Hoskins, E. E.; Kalinichenko, V. V.; Wells, S. I.; Zorn, A. M. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011, 470, 105–120.

[22]

Stelzner, M.; Helmrath, M.; Dunn, J. C. Y.; Henning, S. J.; Houchen, C. W.; Kuo, C.; Lynch, J.; Li, L. H.; Magness, S. T.; Martin, M. G. et al. A nomenclature for intestinal in vitro cultures. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G1359–G1363.

[23]

van der Flier, L. G.; Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 2009, 71, 241–260.

[24]

Marchiando, A. M.; Shen, L.; Graham, W. V.; Edelblum, K. L.; Duckworth, C. A.; Guan, Y. F.; Montrose, M. H.; Turner, J. R.; Watson, A. J. M. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 2011, 140, 1208–1218.e2.

[25]

Leushacke, M.; Barker, N. Ex vivo culture of the intestinal epithelium: Strategies and applications. Gut 2014, 63, 1345–1354.

[26]

Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell 2013, 154, 274–284.

[27]

Yan, K. S.; Janda, C. Y.; Chang, J. L.; Zheng, G. X. Y.; Larkin, K. A.; Luca, V. C.; Chia, L. A.; Mah, A. T.; Han, A.; Terry, J. M. et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature 2017, 545, 238–242.

[28]

Zhang, Y. C.; Que, J. W. BMP signaling in development, stem cells, and diseases of the gastrointestinal tract. Annu. Rev. Physiol. 2020, 82, 251–273.

[29]

Serra, D.; Mayr, U.; Boni, A.; Lukonin, I.; Rempfler, M.; Meylan, L. C.; Stadler, M. B.; Strnad, P.; Papasaikas, P.; Vischi, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 2019, 569, 66–72.

[30]

Middendorp, S.; Schneeberger, K.; Wiegerinck, C. L.; Mokry, M.; Akkerman, R. D. L.; van Wijngaarden, S.; Clevers, H.; Nieuwenhuis, E. E. S. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014, 32, 1083–1091.

[31]

Wang, X.; Yamamoto, Y.; Wilson, L. H.; Zhang, T.; Howitt, B. E.; Farrow, M. A.; Kern, F.; Ning, G.; Hong, Y.; Khor, C. C. et al. Cloning and variation of ground state intestinal stem cells. Nature 2015, 522, 173–178.

[32]

Finkbeiner, S. R.; Hill, D. R.; Altheim, C. H.; Dedhia, P. H.; Taylor, M. J.; Tsai, Y. H.; Chin, A. M.; Mahe, M. M.; Watson, C. L.; Freeman, J. J. et al. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Rep. 2015, 4, 1140–1155.

[33]

Rossi, G.; Manfrin, A.; Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 2018, 19, 671–687.

[34]

Gjorevski, N.; Ranga, A.; Lutolf, M. P. Bioengineering approaches to guide stem cell-based organogenesis. Development 2014, 141, 1794–1804.

[35]

Hughes, C. S.; Postovit, L. M.; Lajoie, G. A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 2010, 10, 1886–1890.

[36]

Sachs, N.; Tsukamoto, Y.; Kujala, P.; Peters, P. J.; Clevers, H. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development 2017, 144, 1107–1112.

[37]

Broguiere, N.; Isenmann, L.; Hirt, C.; Ringel, T.; Placzek, S.; Cavalli, E.; Ringnalda, F.; Villiger, L.; Züllig, R.; Lehmann, R. et al. Growth of epithelial organoids in a defined hydrogel. Adv. Mater. 2018, 30, 1801621.

[38]

Amukarimi, S.; Mozafari, M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm 2021, 2, 123–144.

[39]

Ahmed, J.; Gultekinoglu, M.; Bayram, C.; Kart, D.; Ulubayram, K.; Edirisinghe, M. Alleviating the toxicity concerns of antibacterial cinnamon-polycaprolactone biomaterials for healthcare-related biomedical applications. MedComm 2021, 2, 236–246.

[40]

Gjorevski, N.; Sachs, N.; Manfrin, A.; Giger, S.; Bragina, M. E.; Ordóñez-Morán, P.; Clevers, H.; Lutolf, M. P. Designer matrices for intestinal stem cell and organoid culture. Nature 2016, 539, 560–564.

[41]

Ranga, A.; Girgin, M.; Meinhardt, A.; Eberle, D.; Caiazzo, M.; Tanaka, E. M.; Lutolf, M. P. Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl. Acad. Sci. USA 2016, 113, E6831–E6839.

[42]

Cruz-Acuña, R.; Quirós, M.; Farkas, A. E.; Dedhia, P. H.; Huang, S.; Siuda, D.; García-Hernández, V.; Miller, A. J.; Spence, J. R.; Nusrat, A. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 2017, 19, 1326–1335.

[43]
Dosh, R. Developing models of the small intestine. Ph. D. Dissertation, Sheffield Hallam University, Sheffield, UK, 2018.
[44]

Rosales, A. M.; Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 2016, 1, 15012.

[45]

DiMarco, R. L.; Su, J.; Yan, K. S.; Dewi, R.; Kuo, C. J.; Heilshorn, S. C. Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr. Biol. 2014, 6, 127–142.

[46]

Chrisnandy, A.; Blondel, D.; Rezakhani, S.; Broguiere, N.; Lutolf, M. P. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. Nat. Mater. 2022, 21, 479–487.

[47]

Hernandez-Gordillo, V.; Kassis, T.; Lampejo, A.; Choi, G.; Gamboa, M. E.; Gnecco, J. S.; Brown, A.; Breault, D. T.; Carrier, R.; Griffith, L. G. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 2020, 254, 120125.

[48]

Parisi-Amon, A.; Mulyasasmita, W.; Chung, C.; Heilshorn, S. C. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthcare Mater. 2013, 2, 428–432.

[49]

Zhao, H.; Zhao, Y. B.; Xu, J. B.; Feng, X.; Liu, G. Y.; Zhao, Y. B.; Yang, X. L. Programmable co-assembly of various drugs with temperature sensitive nanogels for optimizing combination chemotherapy. Chem. Eng. J. 2020, 398, 125614.

[50]

Zhao, H.; Xu, J. B.; Huang, W. J.; Zhao, Y. B.; Yang, X. L. Thermosensitive nanogels with cross-linked Pd(II) ions for improving therapeutic effects on platinum-resistant cancers via intratumoral formation of hydrogels. Chem. Mater. 2019, 31, 5089–5103.

[51]

Li, X.; Su, X. L. Multifunctional smart hydrogels: Potential in tissue engineering and cancer therapy. J. Mater. Chem. B 2018, 6, 4714–4730.

[52]

O'Donnell, N.; Okkelman, I. A.; Timashev, P.; Gromovykh, T. I.; Papkovsky, D. B.; Dmitriev, R. I. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater. 2018, 80, 85–96.

[53]

Schöneberg, J.; Dambournet, D.; Liu, T. L.; Forster, R.; Hockemeyer, D.; Betzig, E.; Drubin, D. G. 4D cell biology: Big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell-derived intestinal organoids. Mol. Biol. Cell 2018, 29, 2959–2968.

[54]

Klotz, B. J.; Oosterhoff, L. A.; Utomo, L.; Lim, K. S.; Vallmajo-Martin, Q.; Clevers, H.; Woodfield, T. B. F.; Rosenberg, A. J. W. P.; Malda, J.; Ehrbar, M. et al. A versatile biosynthetic hydrogel platform for engineering of tissue analogues. Adv. Healthcare Mater. 2019, 8, 1900979.

[55]

Zhao, H.; Xu, J. B.; Feng, C.; Ren, J. Y.; Bao, L.; Zhao, Y. B.; Tao, W.; Zhao, Y. L.; Yang, X. L. Tailoring aggregation extent of photosensitizers to boost phototherapy potency for eliciting systemic antitumor immunity. Adv. Mater. 2022, 34, 2106390.

[56]

Zhang, Z. P.; Zhang, R. J.; Xiao, H.; Bhattacharya, K.; Bitounis, D.; Demokritou, P.; McClements, D. J. Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact 2019, 13, 13–25.

[57]

Tripathi, A.; Debelius, J.; Brenner, D. A.; Karin, M.; Loomba, R.; Schnabl, B.; Knight, R. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 397–411.

[58]

Budden, K. F.; Gellatly, S. L.; Wood, D. L. A.; Cooper, M. A.; Morrison, M.; Hugenholtz, P.; Hansbro, P. M. Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63.

[59]

Hua, S. S.; Marks, E.; Schneider, J. J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine 2015, 11, 1117–1132.

[60]

Guo, J. F.; Yu, Z.; Das, M.; Huang, L. Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano 2020, 14, 5075–5089.

[61]

Klotz, B. J.; Gawlitta, D.; Rosenberg, A. J. W. P.; Malda, J.; Melchels, F. P. W. Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol. 2016, 34, 394–407.

[62]

Lin, S. S.; Mukherjee, S.; Li, J. J.; Hou, W. L.; Pan, C.; Liu, J. Y. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci. Adv. 2021, 7, eabf0677.

[63]

Miao, Y. B.; Lin, Y. J.; Chen, K. H.; Luo, P. K.; Chuang, S. H.; Yu, Y. T.; Tai, H. M.; Chen, C. T.; Lin, K. J.; Sung, H. W. Engineering nano- and microparticles as oral delivery vehicles to promote intestinal lymphatic drug transport. Adv. Mater. 2021, 33, 2104139.

[64]

Kanaya, T.; Sakakibara, S.; Jinnohara, T.; Hachisuka, M.; Tachibana, N.; Hidano, S.; Kobayashi, T.; Kimura, S.; Iwanaga, T.; Nakagawa, T. et al. Development of intestinal M cells and follicle-associated epithelium is regulated by TRAF6-mediated NF-κB signaling. J. Exp. Med. 2018, 215, 501–519.

[65]

Farin, H. F.; Jordens, I.; Mosa, M. H.; Basak, O.; Korving, J.; Tauriello, D. V. F.; de Punder, K.; Angers, S.; Peters, P. J.; Maurice, M. M. et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 2016, 530, 340–343.

[66]

Sato, T.; van Es, J. H.; Snippert, H. J.; Stange, D. E.; Vries, R. G.; van den Born, M.; Barker, N.; Shroyer, N. F.; van de Wetering, M.; Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011, 469, 415–418.

[67]

Rodríguez-Colman, M. J.; Schewe, M.; Meerlo, M.; Stigter, E.; Gerrits, J.; Pras-Raves, M.; Sacchetti, A.; Hornsveld, M.; Oost, K. C.; Snippert, H. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 2017, 543, 424–427.

[68]

Gao, M.; Wang, Z. Z.; Zheng, H. Z.; Wang, L.; Xu, S. J.; Liu, X.; Li, W.; Pan, Y. X.; Wang, W. L.; Cai, X. M. et al. Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angew. Chem., Int. Ed. 2020, 59, 3618–3623.

[69]

Wu, D.; Li, J. K.; Xu, S. J.; Xie, Q. Q.; Pan, Y. X.; Liu, X.; Ma, R. L.; Zheng, H. Z.; Gao, M.; Wang, W. L. et al. Engineering Fe-N doped graphene to mimic biological functions of NADPH oxidase in cells. J. Am. Chem. Soc. 2020, 142, 19602–19610.

[70]

Akyildiz, I. F.; Chen, J. D.; Ghovanloo, M.; Guler, U.; Ozkaya-Ahmadov, T.; Pierobon, M.; Sarioglu, A. F.; Unluturk, B. D. Microbiome–gut–brain axis as a biomolecular communication network for the internet of bio-nanothings. IEEE Access 2019, 7, 136161–136175.

[71]

Kaelberer, M. M.; Buchanan, K. L.; Klein, M. E.; Barth, B. B.; Montoya, M. M.; Shen, X. L.; Bohórquez, D. V. A gut–brain neural circuit for nutrient sensory transduction. Science 2018, 361, eaat5236.

[72]

Grün, D.; Lyubimova, A.; Kester, L.; Wiebrands, K.; Basak, O.; Sasaki, N.; Clevers, H.; van Oudenaarden, A. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015, 525, 251–255.

[73]

Haber, A. L.; Biton, M.; Rogel, N.; Herbst, R. H.; Shekhar, K.; Smillie, C.; Burgin, G.; Delorey, T. M.; Howitt, M. R.; Katz, Y. et al. A single-cell survey of the small intestinal epithelium. Nature 2017, 551, 333–339.

[74]

Coward, S.; Clement, F.; Benchimol, E. I.; Bernstein, C. N.; Avina-Zubieta, J. A.; Bitton, A.; Carroll, M. W.; Hazlewood, G.; Jacobson, K.; Jelinski, S. et al. Past and future burden of inflammatory bowel diseases based on modeling of population-based data. Gastroenterology 2019, 156, 1345–1353.e4.

[75]

Ding, N. S.; Hart, A.; De Cruz, P. Systematic review: Predicting and optimising response to anti-TNF therapy in Crohn’s disease-algorithm for practical management. Aliment. Pharmacol. Ther. 2016, 43, 30–51.

[76]

Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D. J. P.; Campbell, B. J.; Jewell, D.; Simmons, A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010, 16, 90–97.

[77]

Ho, S. M.; Lewis, J. D.; Mayer, E. A.; Bernstein, C. N.; Plevy, S. E.; Chuang, E.; Rappaport, S. M.; Croitoru, K.; Korzenik, J. R.; Krischer, J. et al. Challenges in IBD research: Environmental triggers. Inflamm. Bowel Dis. 2019, 25, S13–S23.

[78]

Kotla, N. G.; Burke, O.; Pandit, A.; Rochev, Y. An orally administrated hyaluronan functionalized polymeric hybrid nanoparticle system for colon-specific drug delivery. Nanomaterials 2019, 9, 1246.

[79]

Zhang, S. F.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017, 16, 82–96.

[80]

Suzuki, K.; Murano, T.; Shimizu, H.; Ito, G.; Nakata, T.; Fujii, S.; Ishibashi, F.; Kawamoto, A.; Anzai, S.; Kuno, R. et al. Single cell analysis of Crohn’s disease patient-derived small intestinal organoids reveals disease activity-dependent modification of stem cell properties. J. Gastroenterol. 2018, 53, 1035–1047.

[81]

Rouch, J. D.; Scott, A.; Lei, N. Y.; Solorzano-Vargas, R. S.; Wang, J. F.; Hanson, E. M.; Kobayashi, M.; Lewis, M.; Stelzner, M. G.; Dunn, J. C. Y. et al. Development of functional microfold (M) cells from intestinal stem cells in primary human enteroids. PLoS One 2016, 11, e0148216.

[82]

Driehuis, E.; Clevers, H. CRISPR/Cas 9 genome editing and its applications in organoids. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G257–G265.

[83]

Gazouli, M.; Pachoula, I.; Panayotou, I.; Mantzaris, G.; Chrousos, G.; Anagnou, N. P.; Roma-Giannikou, E. NOD2/CARD15, ATG16L1 and IL23R gene polymorphisms and childhood-onset of Crohn’s disease. World J. Gastroenterol. 2010, 16, 1753–1758.

[84]

Borcherding, D. C.; Ambrosini, Y. M.; Atherly, T.; Rudolph, T.; Essner, J.; Wierson, W.; Jergens, A.; Allenspach, K.; Moch, J. P. Su1046-CRISPR/Cas9-mediated genome editing of multi-drug resistance proteins in a novel canine enteroid model. Gastroenterology 2019, 156, S–494.

[85]

Lenti, M. V.; Di Sabatino, A. Intestinal fibrosis. Mol. Aspects Med. 2019, 65, 100–109.

[86]

Rodansky, E. S.; Johnson, L. A.; Huang, S.; Spence, J. R.; Higgins, P. D. R. Intestinal organoids: A model of intestinal fibrosis for evaluating anti-fibrotic drugs. Exp. Mol. Pathol. 2015, 98, 346–351.

[87]

Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

[88]

AbouAitah, K.; Hassan, H. A.; Swiderska-Sroda, A.; Gohar, L.; Shaker, O. G.; Wojnarowicz, J.; Opalinska, A.; Smalc-Koziorowska, J.; Gierlotka, S.; Lojkowski, W. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers 2020, 12, 144.

[89]

Anirudhan, T. S.; Chithra, S. V.; Shainy, F.; Thomas, J. P. Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. Int. J. Biol. Macromol. 2019, 135, 776–789.

[90]

Gkika, D. A.; Magafas, L.; Cool, P.; Braet, J. Balancing nanotoxicity and returns in health applications: The prisoner’s dilemma. Toxicology 2018, 393, 83–89.

[91]

Hansen, S. F.; Lennquist, A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. Nat. Nanotechnol. 2020, 15, 3–4.

[92]

Tentler, J. J.; Tan, A. C.; Weekes, C. D.; Jimeno, A.; Leong, S.; Pitts, T. M.; Arcaroli, J. J.; Messersmith, W. A.; Eckhardt, S. G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350.

[93]

Bleijs, M.; van de Wetering, M.; Clevers, H.; Drost, J. Xenograft and organoid model systems in cancer research. EMBO J. 2019, 38, e101654.

[94]

Weeber, F.; Ooft, S. N.; Dijkstra, K. K.; Voest, E. E. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem. Biol. 2017, 24, 1092–1100.

[95]

Matano, M.; Date, S.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 2015, 21, 256–262.

[96]

Fumagalli, A.; Drost, J.; Suijkerbuijk, S. J. E.; Van Boxtel, R.; De Ligt, J.; Offerhaus, G. J.; Begthel, H.; Beerling, E.; Tan, E. H.; Sansom, O. J. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl. Acad. Sci. USA 2017, 114, E2357–E2364.

[97]

Lukonin, I.; Serra, D.; Challet Meylan, L.; Volkmann, K.; Baaten, J.; Zhao, R.; Meeusen, S.; Colman, K.; Maurer, F.; Stadler, M. B. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 2020, 586, 275–280.

[98]

Winkler, D. A. Role of artificial intelligence and machine learning in nanosafety. Small 2020, 16, 2001883.

[99]

Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R. A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020, 181, 905–913.e7.

[100]

Hills, R. D.; Pontefract, B. A.; Mishcon, H. R.; Black, C. A.; Sutton, S. C.; Theberge, C. R. Gut microbiome: Profound implications for diet and disease. Nutrients 2019, 11, 1613.

[101]

Ren, L. L.; Ye, J.; Zhao, B.; Sun, J. B.; Cao, P.; Yang, Y. The role of intestinal microbiota in colorectal cancer. Front. Pharmacol. 2021, 12, 674807.

[102]

Zheng, H. Z.; Gu, Z. L.; Pan, Y. X.; Chen, J.; Xie, Q. Q.; Xu, S. J.; Gao, M.; Cai, X. M.; Liu, S. T.; Wang, W. L. et al. Biotransformation of rare earth oxide nanoparticles eliciting microbiota imbalance. Part. Fibre Toxicol. 2021, 18, 17.

[103]

Daoud, A.; Múnera, J. O. Insights into human development and disease from human pluripotent stem cell derived intestinal organoids. Front. Med. 2019, 6, 297.

[104]

Verma, S.; Senger, S.; Cherayil, B. J.; Faherty, C. S. Spheres of influence: Insights into salmonella pathogenesis from intestinal organoids. Microorganisms 2020, 8, 504.

[105]

Zhang, Y. G.; Wu, S. P.; Xia, Y. L.; Sun, J. Salmonella-infected crypt-derived intestinal organoid culture system for host–bacterial interactions. Physiol. Rep. 2014, 2, e12147.

[106]

Wilson, S. S.; Tocchi, A.; Holly, M. K.; Parks, W. C.; Smith, J. G. A small intestinal organoid model of non-invasive enteric pathogen–epithelial cell interactions. Mucosal Immunol. 2015, 8, 352–361.

[107]

Forbester, J. L.; Goulding, D.; Vallier, L.; Hannan, N.; Hale, C.; Pickard, D.; Mukhopadhyay, S.; Dougan, G. Interaction of Salmonella enterica serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect. Immun. 2015, 83, 2926–2934.

[108]

Tse, C. M.; In, J. G.; Yin, J. Y.; Donowitz, M.; Doucet, M.; Foulke-Abel, J.; Ruiz-Perez, F.; Nataro, J. P.; Zachos, N. C.; Kaper, J. B. et al. Enterohemorrhagic E. coli (EHEC)-secreted serine protease EspP stimulates electrogenic ion transport in human colonoid monolayers. Toxins 2018, 10, 351.

[109]

Rajan, A.; Vela, L.; Zeng, X. L.; Yu, X. M.; Shroyer, N.; Blutt, S. E.; Poole, N. M.; Carlin, L. G.; Nataro, J. P.; Estes, M. K. et al. Novel segment- and host-specific patterns of enteroaggregative Escherichia coli adherence to human intestinal enteroids. mBio 2018, 9, e02419–17.

[110]

Engevik, M. A.; Yacyshyn, M. B.; Engevik, K. A.; Wang, J.; Darien, B.; Hassett, D. J.; Yacyshyn, B. R.; Worrell, R. T. Human clostridium difficile infection: Altered mucus production and composition. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G510–G524.

[111]

Finkbeiner, S. R.; Zeng, X. L.; Utama, B.; Atmar, R. L.; Shroyer, N. F.; Estes, M. K. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio 2012, 3, e00159–12.

[112]

Saxena, K.; Blutt, S. E.; Ettayebi, K.; Zeng, X. L.; Broughman, J. R.; Crawford, S. E.; Karandikar, U. C.; Sastri, N. P.; Conner, M. E.; Opekun, A. R. et al. Human intestinal enteroids: A new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 2016, 90, 43–56.

[113]

Yin, Y. B.; Bijvelds, M.; Dang, W.; Xu, L.; van der Eijk, A. A.; Knipping, K.; Tuysuz, N.; Dekkers, J. F.; Wang, Y. J.; de Jonge, J. et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res. 2015, 123, 120–131.

[114]

Hakim, M. S.; Chen, S. R.; Ding, S. H.; Yin, Y. B.; Ikram, A.; Ma, X. X.; Wang, W. S.; Peppelenbosch, M. P.; Pan, Q. W. Basal interferon signaling and therapeutic use of interferons in controlling rotavirus infection in human intestinal cells and organoids. Sci. Rep. 2018, 8, 8341.

[115]

Blutt, S. E.; Crawford, S. E.; Ramani, S.; Zou, W. Y.; Estes, M. K. Engineered human gastrointestinal cultures to study the microbiome and infectious diseases. Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 241–251.

[116]

Ettayebi, K.; Crawford, S. E.; Murakami, K.; Broughman, J. R.; Karandikar, U.; Tenge, V. R.; Neill, F. H.; Blutt, S. E.; Zeng, X. L.; Qu, L. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016, 353, 1387–1393.

[117]

Zhang, D. S.; Tan, M.; Zhong, W. M.; Xia, M.; Huang, P. W.; Jiang, X. Human intestinal organoids express histo-blood group antigens, bind norovirus VLPs, and support limited norovirus replication. Sci. Rep. 2017, 7, 12621.

[118]

Heo, I.; Dutta, D.; Schaefer, D. A.; Iakobachvili, N.; Artegiani, B.; Sachs, N.; Boonekamp, K. E.; Bowden, G.; Hendrickx, A. P. A.; Willems, R. J. L. et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 2018, 3, 814–823.

[119]

Lamers, M. M.; Beumer, J.; van der Vaart, J.; Knoops, K.; Puschhof, J.; Breugem, T. I.; Ravelli, R. B. G.; van Schayck, J. P.; Mykytyn, A. Z.; Duimel, H. Q. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020, 369, 50–54.

[120]

Zhou, J.; Li, C.; Liu, X. J.; Chiu, M. C.; Zhao, X. Y.; Wang, D.; Wei, Y X.; Lee, A.; Zhang, A. J.; Chu, H. et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 2020, 26, 1077–1083.

[121]

Yui, S.; Nakamura, T.; Sato, T.; Nemoto, Y.; Mizutani, T.; Zheng, X.; Ichinose, S.; Nagaishi, T.; Okamoto, R.; Tsuchiya, K. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 2012, 18, 618–623.

[122]

Fordham, R. P.; Yui, S.; Hannan, N. R. F.; Soendergaard, C.; Madgwick, A.; Schweiger, P. J.; Nielsen, O. H.; Vallier, L.; Pedersen, R. A.; Nakamura, T. et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 2013, 13, 734–744.

[123]

Fukuda, M.; Mizutani, T.; Mochizuki, W.; Matsumoto, T.; Nozaki, K.; Sakamaki, Y.; Ichinose, S.; Okada, Y.; Tanaka, T.; Watanabe, M. et al. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Genes Dev. 2014, 28, 1752–1757.

[124]

Sugimoto, S.; Ohta, Y.; Fujii, M.; Matano, M.; Shimokawa, M.; Nanki, K.; Date, S.; Nishikori, S.; Nakazato, Y.; Nakamura, T. et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell 2018, 22, 171–176.E5.

[125]

Jeppesen, P. B.; Pertkiewicz, M.; Messing, B.; Iyer, K.; Seidner, D. L.; O’Keefe, S. J. D.; Forbes, A.; Heinze, H.; Joelsson, B. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology 2012, 143, 1473–1481.e3.

[126]

Sung, J. H.; Yu, J. J.; Luo, D.; Shuler, M. L.; March, J. C. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 2011, 11, 389–392.

[127]

Costello, C. M.; Jia, H. P.; Shaffiey, S.; Yu, J. J.; Jain, N. K.; Hackam, D.; March, J. C. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol. Bioeng. 2014, 111, 1222–1232.

[128]

Finkbeiner, S. R.; Freeman, J. J.; Wieck, M. M.; El-Nachef, W.; Altheim, C. H.; Tsai, Y. H.; Huang, S.; Dyal, R.; White, E. S.; Grikscheit, T. C. et al. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol. Open 2015, 4, 1462–1472.

[129]

Yan, N.; Hu, B.; Xu, J. C.; Cai, R.; Liu, Z. H.; Fu, D. P.; Huo, B. B.; Liu, Z. H.; Zhao, Y. L.; Chen, C. Y. et al. Stem cell Janus patch for periodontal regeneration. Nano Today 2022, 42, 101336.

[130]

Gjorevski, N.; Nikolaev, M.; Brown, T. E.; Mitrofanova, O.; Brandenberg, N.; DelRio, F. W.; Yavitt, F. M.; Liberali, P.; Anseth, K. S.; Lutolf, M. P. Tissue geometry drives deterministic organoid patterning. Science 2022, 375, eaaw9021.

[131]

Nikolaev, M.; Mitrofanova, O.; Broguiere, N.; Geraldo, S.; Dutta, D.; Tabata, Y.; Elci, B.; Brandenberg, N.; Kolotuev, I.; Gjorevski, N. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 2020, 585, 574–578.

[132]

Shaffiey, S. A.; Jia, H. P.; Keane, T.; Costello, C.; Wasserman, D.; Quidgley, M.; Dziki, J.; Badylak, S.; Sodhi, C. P.; March, J. C. et al. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen. Med. 2016, 11, 45–61.

[133]

Lindemans, C. A.; Calafiore, M.; Mertelsmann, A. M.; O'Connor, M. H.; Dudakov, J. A.; Jenq, R. R.; Velardi, E.; Young, L. F.; Smith, O. M.; Lawrence, G. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 2015, 528, 560–564.

[134]

Workman, M. J.; Mahe, M. M.; Trisno, S.; Poling, H. M.; Watson, C. L.; Sundaram, N.; Chang, C. F.; Schiesser, J.; Aubert, P.; Stanley, E. G. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 2017, 23, 49–59.

[135]

Yu, L.; Tian, X.; Gao, D. X.; Lang, Y.; Zhang, X. X.; Yang, C.; Gu, M. M.; Shi, J. M.; Zhou, P. K.; Shang, Z. F. Oral administration of hydroxylated-graphene quantum dots induces intestinal injury accompanying the loss of intestinal stem cells and proliferative progenitor cells. Nanotoxicology 2019, 13, 1409–1421.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2022
Revised: 17 September 2022
Accepted: 06 October 2022
Published: 21 November 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1200900), the National Natural Science Foundation of China (NSFC, No. 32271460), the Major instrument project of NSFC (No. 22027810), NSFC Major Research Plan-Integrated Program (No. 92143301), the Innovative Research Group Project of NSFC (No. 11621505), the CAS international cooperative project (No. GJHZ201949), the CAS Interdisciplinary Innovation Team, the CAS Key Research Program for Frontier Sciences (No. QYZDJ-SS-SLH022), the Research and Development Project in Key Areas of Guangdong Province (No. 2019B090917011), CAMS Innovation Fund for Medical Sciences (No. CIFMS 2019-I2M-5-018), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000). All figures in this review are created with Biorender.com (2022).

Return