Journal Home > Volume 16 , Issue 4

The clearwater obtained from stabilized oily wastewater has become a worldwide challenge. Nowdays, the area of oil/water emulsion separation materials have accomplished great progress, but still faces the enormous problems of low flux, poor stability, and pollution resistance. Nanocelluloses (cellulose nanocrystals (CNC)) with the advantages of hydrophilicity, eco-friendliness, and regeneration are ideal materials for the construction of separation membranes. In this paper, a flexible, anti-fouling, and durable nanocellulose-based membrane functionalized by block copolymer (poly(N-isopropylacrylamide)-b-poly(N,N-dimethylaminoethyl methacrylate)) is prepared via chemical modification and self-assembly, showing high separation efficiency (above 99.6%) for stabilized oil-in-water emulsions, excellent anti-fouling and cycling stability, high-temperature resistance, and acid and alkali resistance. More importantly, the composite membrane has ultra-high flux in separating oil-in-water emulsions (29,003 L·m−2·h−1·bar−1) and oil/water mixture (51,444 L·m−2·h−1·bar−1), which ensures high separation efficiency. With its durability, easy scale-up, and green regeneration, we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible, durable, and anti-fouling nanocellulose-based membrane functionalized by block copolymer with ultra-high flux and efficiency for oil-in-water emulsions separation

Show Author's information Jianfei Wu1Yuxuan Su1Ziwei Cui1Yang Yu1Jiafu Qu2Jundie Hu2Yahui Cai1( )Jianzhang Li1( )Dan Tian1( )Qichun Zhang3
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong 999077, China

Abstract

The clearwater obtained from stabilized oily wastewater has become a worldwide challenge. Nowdays, the area of oil/water emulsion separation materials have accomplished great progress, but still faces the enormous problems of low flux, poor stability, and pollution resistance. Nanocelluloses (cellulose nanocrystals (CNC)) with the advantages of hydrophilicity, eco-friendliness, and regeneration are ideal materials for the construction of separation membranes. In this paper, a flexible, anti-fouling, and durable nanocellulose-based membrane functionalized by block copolymer (poly(N-isopropylacrylamide)-b-poly(N,N-dimethylaminoethyl methacrylate)) is prepared via chemical modification and self-assembly, showing high separation efficiency (above 99.6%) for stabilized oil-in-water emulsions, excellent anti-fouling and cycling stability, high-temperature resistance, and acid and alkali resistance. More importantly, the composite membrane has ultra-high flux in separating oil-in-water emulsions (29,003 L·m−2·h−1·bar−1) and oil/water mixture (51,444 L·m−2·h−1·bar−1), which ensures high separation efficiency. With its durability, easy scale-up, and green regeneration, we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.

Keywords: nanocellulose-based membrane, oil/water emulsions separation, ultra-high flux, good durability, anti-fouling property

References(67)

[1]

Khalilifard, M.; Javadian, S. Magnetic superhydrophobic polyurethane sponge loaded with Fe3O4@oleic acid@graphene oxide as high performance adsorbent oil from water. Chem. Eng. J. 2021, 408, 127369.

[2]

Love, C. R.; Arrington, E. C.; Gosselin, K. M.; Reddy, C. M.; Van Mooy, B. A. S.; Nelson, R. K.; Valentine, D. L. Microbial production and consumption of hydrocarbons in the global ocean. Nat. Microbiol. 2021, 6, 489–498.

[3]

Feoktistov, D. V.; Glushkov, D. O.; Kuznetsov, G. V.; Orlova, E. G. Gel fuels based on oil-filled cryogels: Corrosion of tank material and spontaneous ignition. Chem. Eng. J. 2021, 421, 127765.

[4]

Lu, H.; Pan, Z. C.; Wang, H. L.; Liu, Y. Q.; Dai, P. Y.; Yang, Q. Fiber coalescence treatment of oily wastewater: A new theory and application. J. Hazard. Mater. 2021, 412, 125188.

[5]

Huynh, B. Q.; Kwong, L. H.; Kiang, M. V.; Chin, E. T.; Mohareb, A. M.; Jumaan, A. O.; Basu, S.; Geldsetzer, P.; Karaki, F. M.; Rehkopf, D. H. Public health impacts of an imminent Red Sea oil spill. Nat. Sustain. 2021, 4, 1084–1091.

[6]

Somee, M. R.; Dastgheib, S. M. M.; Shavandi, M.; Maman, L. G.; Kavousi, K.; Ali Amoozegar M.; Mehrshad, M. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci. Rep. 2021, 11, 11316.

[7]

Gong, H. F.; Li, W. L.; Zhang, X. M.; Peng, Y.; Yu, B.; Mou, Y. Effects of droplet dynamic characteristics on the separation performance of a demulsification and dewatering device coupling electric and centrifugal fields. Sep. Purif. Technol. 2021, 257, 117905.

[8]

Jahromi, A. F.; Elektorowicz, M. Electrokinetically assisted oil-water phase separation in oily sludge with implementing novel controller system. J. Hazard. Mater. 2018, 358, 434–440.

[9]

Cai, Y. H.; Shi, S. Q.; Fang, Z.; Li, J. Z. Design, development, and outlook of superwettability membranes in oil/water emulsions separation. Adv. Mater. Interfaces 2021, 8, 2100799.

[10]

Chowdhury, M. R.; Steffes, J.; Huey, B. D.; McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 2018, 361, 682–686.

[11]

Ikigaki, K.; Okada, K.; Tokudome, Y.; Toyao, T.; Falcaro, P.; Doonan, C. J.; Takahashi, M. MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 6886–6890.

[12]

Hu, Q.; Xu, L. C., Fu, K. X.; Zhu, F. C.; Yang, T. Y.; Yang, T.; Luo, J. M.; Wu, H. M.; Yu, D. Y. Ultrastable MOF-based foams for versatile applications. Nano Res. 2022, 15, 2961–2970.

[13]

Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017, 16, 1198–1202.

[14]

Liu, G. P.; Jin, W. Q.; Xu, N. P. Graphene-based membranes. Chem. Soc. Rev. 2015, 44, 5016–5030.

[15]

Fan, C. Y.; Wu, H.; Guan, J. Y.; You, X. D.; Yang, C.; Wang, X. Y.; Cao, L.; Shi, B. B.; Peng, Q.; Kong, Y. et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem., Int. Ed. 2021, 60, 18051–18058.

[16]

Cao, L.; Wu, H.; Cao, Y.; Fan, C. Y.; Zhao, R.; He, X. Y.; Yang, P. F.; Shi, B. B.; You, X. D.; Jiang, Z. Y. Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 2020, 32, 2005565.

[17]
Cai, Y. H.; Yu, Y.; Wu, J. F.; Wang, K. L.; Dong, Y. M.; Qu, J. F.; Hu, J. D.; Zhang, L. W.; Fu, Q. L.; Li, J. et al. Durable, flexible, and super-hydrophobic wood membrane with nanopore by molecular cross-linking for efficient separation of stabilized water/oil emulsions. EcoMat, in press, https://doi.org/10.1002/eom2.12255.
[18]
Cai, Y. H.; Wu, J. F.; Wang, K. L.; Dong, Y. M.; Hu, J. D.; Qu, J. F.; Tian, D.; Li, J. Z.; Fu, Q. L. Thermo-controlled, self-released smart wood tailored by nanotechnology for fast clean-up of highly viscous liquids. SmartMat, in press, https://doi.org/10.1002/smm2.1133.
[19]

Kumar, M.; Wightman, R.; Atanassov, I.; Gupta, A.; Hurst, C. H.; Hemsley, P. A.; Turner, S. S-acylation of the cellulose synthase complex is essential for its plasma membrane localization. Science 2016, 353, 166–169.

[20]

Zhang, W. X.; Ding, L. H.; Luo, J. Q.; Jaffrin, M. Y.; Tang, B. Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review. Chem. Eng. J. 2016, 302, 446–458.

[21]

Cai, Y. H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux. Adv. Mater. 2020, 32, 2001265.

[22]

Mähringer, A.; Hennemann, M.; Clark, T.; Bein, T.; Medina, D. D. Energy efficient ultrahigh flux separation of oily pollutants from water with superhydrophilic Nanoscale metal-organic framework architectures. Angew. Chem., Int. Ed. 2021, 60, 5519–5526.

[23]

Ye, C. N.; Voet, V. S. D.; Folkersma, R.; Loos, K. Robust superamphiphilic membrane with a closed-loop life cycle. Adv. Mater. 2021, 33, 2008460.

[24]

Li, J.; Li, H. Y., Xu, L. W.; Wang, L. J.; Hu, Z.; Liu, L.; Huang, Y. D.; Kotov, N. A. Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength. SmartMat 2021, 2, 76–87.

[25]

Wang, X. Z.; Xia, Q. Q.; Jing, S. S.; Li, C.; Chen, Q. Y.; Chen, B.; Pang, Z. Q.; Jiang, B.; Gan, W. T.; Chen, G. et al. Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites. Small 2021, 17, 2008011.

[26]

Wang, X. Z.; Pang, Z. Q.; Chen, C. J.; Xia, Q. Q.; Zhou, Y. B.; Jing, S. S.; Wang, R. L.; Ray, U.; Gan, W. T.; Li, C. et al. All-natural, degradable, rolled-up straws based on cellulose micro- and Nano-hybrid fibers. Adv. Funct. Mater. 2020, 30, 1910417.

[27]

Ferreira, E. S.; Rezende, C. A.; Cranston, E. D. Fundamentals of cellulose lightweight materials: Bio-based assemblies with tailored properties. Green Chem. 2021, 23, 3542–3568.

[28]

Hou, Y.; Duan, C. T.; Zhu, G. D.; Luo, H.; Liang, S. M.; Jin, Y.; Zhao, N.; Xu, J. Functional bacterial cellulose membranes with 3D porous architectures: Conventional drying, tunable wettability and water/oil separation. J. Membr. Sci. 2019, 591, 117312.

[29]

Polko, J. K.; Kieber, J. J. The regulation of cellulose biosynthesis in plants. Plant Cell 2019, 31, 282–296.

[30]

Qin, H. F.; Zhang, Y. F.; Jiang, J. G.; Wang, L. L.; Song, M. Y.; Bi, R.; Zhu, P. H.; Jiang, F. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly. Adv. Funct. Mater. 2021, 31, 2106269.

[31]

Li, Q. H.; Yuan, Z. H.; Zhang, C.; Hu, S. Q.; Chen, Z. M.; Wu, Y. Z.; Chen, P.; Qi, H. S.; Ye, D. D. Tough, highly oriented, super thermal insulating regenerated all-cellulose sponge-aerogel fibers integrating a graded aligned nanostructure. Nano Lett. 2022, 22, 3516–3524.

[32]

Forsman, N.; Lohtander, T.; Jordan, J.; Huynh, N.; Seppälä, A.; Laaksonen, P.; Franssila, S.; Österberg, M. Microalgae Chlorella vulgaris and kraft lignin stabilized cellulosic wet foams for camouflage. Soft Matter. 2022, 18, 2060–2071.

[33]

Ma, H. L.; Li, X.; Lou, J.; Gu, Y. J.; Zhang, Y.; Jiang, Y. F.; Cheng, H. L.; Han, W. J. Strong bacterial cellulose-based films with natural laminar alignment for highly sensitive humidity sensors. ACS Appl. Mater. Interfaces 2022, 14, 3165–3175.

[34]

Li, Z. D.; Qiu, F. X.; Yue, X. J.; Tian, Q.; Yang, D. Y.; Zhang. T. Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation. J. Environ. Chem. Eng. 2021, 9, 105857.

[35]

Li, Z. D.; Gou, M.; Yue, X. J.; Tian, Q.; Yang, D. Y.; Qiu, F. X.; Zhang. T. Facile fabrication of bifunctional ZIF-L/cellulose composite membrane for efficient removal of tellurium and antibacterial effects. J. Hazard. Mater. 2021, 416, 125888.

[36]

Pei, X. P.; Gan, L.; Tong, Z. H.; Gao, H. P.; Meng, S. Y.; Zhang, W. L.; Wang, P. X.; Chen, Y. S. Robust cellulose-based composite adsorption membrane for heavy metal removal. J. Hazard. Mater. 2021, 406, 124746.

[37]

Zhang, Z. H.; Chen, Z. Y.; Wang, Y.; Zhao, Y. J.; Shang, L. R. Cholesteric cellulose liquid crystals with multifunctional structural colors. Adv. Funct. Mater. 2022, 32, 2107242.

[38]

Luan, Q.; Zhang, H.; Chen, C. J.; Jiang, F.; Yao, Y. G.; Deng, Q. C.; Zeng, K. Z.; Tang, H.; Huang, F. H. Controlled nutrient delivery through a pH-responsive wood vehicle. ACS Nano 2022, 16, 2198–2208.

[39]

Liu, X. G.; Wu, M.; Wang, M.; Hu, Q. D.; Liu, J. J.; Duan, Y. K.; Liu, B. Direct synthesis of photosensitizable bacterial cellulose as engineered living material for skin wound repair. Adv. Mater. 2022, 34, 2109010.

[40]

Ziegler, M.; Schlosser, M.; Abel, P.; Ziegler, B. Antibody response in rats against non-toxic glucose sensor membranes tested in cell culture. Biomaterials 1994, 15, 859–864.

[41]

Cho, S.; Hanif, Z.; Yun, Y.; Khan, Z. A.; Jang, S.; Ra, Y.; Lin, Z. H.; La, M.; Park, S. J.; Choi, D. Triboelectrification-driven microbial inactivation in a conductive cellulose filter for affordable, portable, and efficient water sterilization. Nano Energy 2021, 88, 106228.

[42]

Yao, A. R.; Yan, Y. Q.; Tan, L.; Shi, Y. D.; Zhou, M.; Zhang, Y.; Zhu, P. X.; Huang, S. J. Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals. J. Membr. Sci. 2021, 637, 119621.

[43]

Zhu, R. F.; Wang, D.; Liu, Y. M.; Liu, M. M.; Fu, S. H. Bifunctional superwetting carbon nanotubes/cellulose composite membrane for solar desalination and oily seawater purification. Chem. Eng. J. 2022, 433, 133510.

[44]

Gan, W. T.; Wang, Y. X.; Xiao, S. L.; Gao, R. N.; Shang, Y.; Xie, Y. J.; Liu, J. Q.; Li, J. Magnetically driven 3D Cellulose film for improved energy efficiency in solar evaporation. ACS Appl. Mater. Interfaces 2021, 13, 7756–7765.

[45]

Zhang, Y.; Yin, M. L.; Li, L.; Fan, B. J.; Liu, Y.; Li, R.; Ren, X. H.; Huang, T. S.; Kim, I. S. Construction of aerogels based on nanocrystalline cellulose and chitosan for high efficient oil/water separation and water disinfection. Carbohydr. Polym. 2020, 243, 116461.

[46]

Farid, T.; Rafiq, M. I.; Ali, A.; Tang, W. H. Transforming wood as next-generation structural and functional materials for a sustainable future. EcoMat. 2022, 4, e12154.

[47]

Wang, Y. Q.; He, Y.; Li, H. J.; Yu, J.; Zhang, L. Y.; Chen, L.; Bai, Y. Layer-by-layer construction of CS-CNCs multilayer modified mesh with robust anti-crude-oil-fouling performance for efficient oil/water separation. J. Membr. Sci. 2021, 639, 119776.

[48]

Fan, T.; Qian, Q. H.; Hou, Z. H.; Liu, Y. P.; Lu, M. Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method. Carbohydr. Polym. 2018, 200, 63–71.

[49]

Wang, F. P.; Zhao, X. J.; Wahid, F.; Zhao, X. Q.; Qin, X. T.; Bai, H.; Xie, Y. Y.; Zhong, C.; Jia, S. R. Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Carbohydr. Polym. 2021, 253, 117220.

[50]

Wang, Z. J.; Liu, G. J.; Huang S. S. In situ generated Janus fabrics for the rapid and efficient separation of oil from oil-in-water emulsions. Angew. Chem., Int. Ed. 2016, 55, 14610–14613.

[51]

Chen, L.; Liu, M. J.; Lin, L.; Zhang, T.; Ma, J.; Song, Y. L.; Jiang, L. Thermal-responsive hydrogel surface: Tunable wettability and adhesion to oil at the water/solid interface. Soft Matter. 2010, 6, 2708–2712.

[52]

Cai, Y. H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Nanofibrous metal-organic framework composite membrane for selective efficient oil/water emulsion separation. J. Membr. Sci. 2017, 543, 10–17.

[53]

Rao, J. P.; Bao, L. X.; Wang, B. W.; Fan, M. Z.; Feo, L. Plasma surface modification and bonding enhancement for bamboo composites. Compos. Part B Eng. 2018, 138, 157–167.

[54]

Yang, Y. F.; Wang, J.; Zhang, J.; Liu, J. C.; Yang, X. L.; Zhao, H. Y. Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir 2009, 25, 11808–11814.

[55]

Zhang, Y. Y.; He, X. W.; Li, W. Y. Study on the room temperature synthesis of highly photoluminescent and temperature-sensitive CDs/PNIPAM hybrid hydrogels and their properties. RSC Adv. 2015, 5, 71030–71034.

[56]

Gu, Y.; Li, H. X.; Liu, L. X.; Li, J. Y.; Zhang, B. W.; Ma, H. J. Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced “grafting to” strategy. Carbon 2021, 178, 678–687.

[57]

Sun, J. W.; Bi, H. C.; Su, S.; Jia, H. Y.; Xie, X.; Sun, L. T. One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion. J. Membr. Sci. 2018, 553, 131–138.

[58]

Liu, Y. N.; Coppens, M. O. Cell membrane-inspired graphene nanomesh membrane for fast separation of oil-in-water emulsions. Adv. Funct. Mater. 2022, 32, 2200199.

[59]

Wang, Y.; Yang, H.; Yang, Y.; Zhu, L. J.; Zeng, Z. X.; Liu, S.; Li, Y. G.; Liang, Z. Y. Poly(vinylidene fluoride) membranes with underwater superoleophobicity for highly efficient separation of oil-in-water emulsions in resisting fouling. Sep. Purif. Technol. 2022, 285, 120298.

[60]

Li, R. J.; Li, J. Y.; Rao, L. H.; Lin, H. J.; Shen, L. G.; Xu, Y. C.; Chen, J. R.; Liao, B. Q. Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation. J. Membr. Sci. 2021, 619, 118790.

[61]

He, Y.; Xu, K. X.; Feng, X.; Chen, L.; Jiang, Z. Y. A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsions. J. Membr. Sci. 2021, 637, 119644.

[62]

Yang, H.; Zhu, B. K.; Zhu, L. J.; Zeng, Z. X.; Wang, G.; Xiong, Z. Efficient fenton-like catalysis boosting the antifouling performance of the heterostructured membranes fabricated via vapor-induced phase separation and in situ mineralization. ACS Appl. Mater. Interfaces 2021, 13, 43648–43660.

[63]

Zhang, H. J.; Wang, Z. H.; Shen, Y. Q.; Mu, P.; Wang, Q. T.; Li, J. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. J. Colloid Interface Sci. 2020, 561, 861–869.

[64]

Liu, N.; Zhang, Q. D.; Qu, R. X.; Zhang, W. F.; Li, H. F.; Wei, Y.; Feng, L. Nanocomposite deposited membrane for oil-in-water emulsion separation with in situ removal of anionic dyes and surfactants. Langmuir 2017, 33, 7380–7388.

[65]

Yang, H. C.; Pi, J. K.; Liao, K. J.; Huang, H.; Wu, Q. Y.; Huang, X. J.; Xu, Z. K. Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 2014, 6, 12566–12572.

[66]

Chaudhary, J. P.; Vadodariya, N.; Nataraj, S. K.; Meena, R. Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 2015, 7, 24957–24962.

[67]

Lin, X.; Chen, Y. L.; Liu, N.; Cao, Y. Z.; Xu, L. X.; Zhang, W. F.; Feng, L. In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO2 nanocluster-based mesh. Nanoscale 2016, 8, 525–8529.

File
12274_2022_5149_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 July 2022
Revised: 07 September 2022
Accepted: 07 October 2022
Published: 22 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 22108125, 21971113, and 22175094), Independent Innovation of Agricultural Science and Technology in Jiangsu Province (Nos. CX(21)3166, and CX(21)3163), the Natural Science Foundation of Jiangsu Province (No. BK20210627), Doctor Project of Mass Entrepreneurship and Innovation in Jiangsu Province (No. JSSCBS20210549), and Nanjing Science & Technology Innovation Project for Personnel Studying Abroad and Research Start-up Funding of Nanjing Forestry University (No. 163020259). Q. C. Z. appreciates the funding support from City University of Hong Kong and Hong Kong Institute for Advanced Study, City University of Hong Kong.

Return