Journal Home > Volume 16 , Issue 3

As potential alternatives to graphite, silicon (Si) and silicon oxides (SiOx) received a lot of attention as anode materials for lithium-ion batteries owing to their relatively low working potentials, high theoretical specific capacities, and abundant resources. However, the commercialization of Si-based anodes is greatly hindered by their massive volume expansion, low conductivity, unstable solid electrolyte interface (SEI), and low initial Coulombic efficiency (ICE). Continuous endeavors have been devoted to overcoming these challenges to achieve practical usage. This review is centered on the major challenges and latest developments in the modification strategies of Si-based anodes, including structure optimization, surface/interface regulation, novel binders, and innovative design of electrolyte. Finally, outlooks and perspectives of Si-based anodes for future development are presented.


menu
Abstract
Full text
Outline
About this article

Recent advances in modification strategies of silicon-based lithium-ion batteries

Show Author's information Wenlei WangYu WangLixuan YuanChaolin YouJunwei WuLili LiuJilei YeYunling Wu( )Lijun Fu( )
State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

As potential alternatives to graphite, silicon (Si) and silicon oxides (SiOx) received a lot of attention as anode materials for lithium-ion batteries owing to their relatively low working potentials, high theoretical specific capacities, and abundant resources. However, the commercialization of Si-based anodes is greatly hindered by their massive volume expansion, low conductivity, unstable solid electrolyte interface (SEI), and low initial Coulombic efficiency (ICE). Continuous endeavors have been devoted to overcoming these challenges to achieve practical usage. This review is centered on the major challenges and latest developments in the modification strategies of Si-based anodes, including structure optimization, surface/interface regulation, novel binders, and innovative design of electrolyte. Finally, outlooks and perspectives of Si-based anodes for future development are presented.

Keywords: silicon, lithium-ion batteries, silicon oxides, modification strategies

References(249)

[1]

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

[2]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[3]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[4]

Chae, S.; Park, S.; Ahn, K.; Nam, G.; Lee, T.; Sung, J.; Kim, N.; Cho, J. Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy Environ. Sci. 2020, 13, 1212–1221.

[5]

Ryu, J.; Hong, D.; Lee, H. W.; Park, S. Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res. 2017, 10, 3970–4002.

[6]

Zhang, H. M.; Zhao, S. W.; Huang, F. Q. A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. J. Mater. Chem. A 2021, 9, 27140–27169.

[7]

Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 110–135.

[8]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[9]

Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56–72.

[10]

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

[11]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybutin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[12]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[13]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[14]

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

[15]

McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966–4985.

[16]

Son, Y.; Sim, S.; Ma, H.; Choi, M.; Son, Y.; Park, N.; Cho, J.; Park, M. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes. Adv. Mater. 2018, 30, 1705430.

[17]

Ge, M.; Fang, X.; Rong, J.; Zhou, C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 2013, 24, 422001.

[18]

Shen, X. H.; Tian, Z. Y.; Fan, R. J.; Shao, L.; Zhang, D. P.; Cao, G. L.; Kou, L.; Bai, Y. Z. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J. Energy Chem. 2018, 27, 1067–1090.

[19]

Lee, J. K.; Oh, C.; Kim, N.; Hwang, J. Y.; Sun, Y. K. Rational design of silicon-based composites for high-energy storage devices. J. Mater. Chem. A 2016, 4, 5366–5384.

[20]

Bommier, C.; Ji, X. L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes. Small 2018, 14, e1703576.

[21]

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

[22]

Zhou, Y.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Zhou, R.; Peng, W. J. Improved electrochemical performance of Si/C material based on the interface stability. J. Alloys Compd. 2017, 725, 1304–1312.

[23]

Li, T.; Yang, J. Y.; Lu, S. G.; Wang, H.; Ding, H. Y. Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries. Rare Met. 2013, 32, 299–304.

[24]

Yoon, T.; Nguyen, C. C.; Seo, D. M.; Lucht, B. L. Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries. J. Electrochem. Soc. 2015, 162, A2325–A2330.

[25]

Yuda, A. P.; Koraag, P. Y. E.; Iskandar, F.; Wasisto, H. S.; Sumboja, A. Advances of the top-down synthesis approach for high-performance silicon anodes in Li-ion batteries. J. Mater. Chem. A 2021, 9, 18906–18926.

[26]

Liang, B.; Liu, Y. P.; Xu, Y. H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 2014, 267, 469–490.

[27]

Salah, M.; Hall, C.; Murphy, P.; Francis, C.; Kerr, R.; Stoehr, B.; Rudd, S.; Fabretto, M. Doped and reactive silicon thin film anodes for lithium ion batteries: A review. J. Power Sources 2021, 506, 230194.

[28]

Shen, T.; Yao, Z. J.; Xia, X. H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Rationally designed silicon nanostructures as anode material for lithium-ion batteries. Adv. Eng. Mater. 2018, 20, 1700591.

[29]

Kwon, T. W.; Choi, J. W.; Coskun, A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 2018, 47, 2145–2164.

[30]

Feng, K.; Li, M.; Liu, W. W.; Kashkooli, A. G.; Xiao, X. C.; Cai, M.; Chen, Z. W. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small 2018, 14, 1702737.

[31]

Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863.

[32]

Schiele, A.; Breitung, B.; Hatsukade, T.; Berkes, B. B.; Hartmann, P.; Janek, J.; Brezesinski, T. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries. ACS Energy Lett. 2017, 2, 2228–2233.

[33]

Casimir, A.; Zhang, H. G.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy 2016, 27, 359–376.

[34]

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

[35]

Tao, W.; Wang, P.; You, Y.; Park, K.; Wang, C. Y.; Li, Y. K.; Cao, F. F.; Xin, S. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res. 2019, 12, 1739–1749.

[36]

Li, P.; Zhao, G. Q.; Zheng, X. B.; Xu, X.; Yao, C. H.; Sun, W. P.; Dou, S. X. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 2018, 15, 422–446.

[37]

Yang, Y.; Yuan, W.; Kang, W. Q.; Ye, Y. T.; Yuan, Y. H.; Qiu, Z. Q.; Wang, C.; Zhang, X. Q.; Ke, Y. Z.; Tang, Y. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale 2020, 12, 7461–7484.

[38]

Zafar Abbas Manj, R.; Zhang, F. Z.; Ur Rehman, W.; Luo, W.; Yang, J. P. Toward understanding the interaction within silicon-based anodes for stable lithium storage. Chem. Eng. J. 2020, 385, 123821.

[39]

Basu, S.; Suresh, S.; Ghatak, K.; Bartolucci, S. F.; Gupta, T.; Hundekar, P.; Kumar, R.; Lu, T. M.; Datta, D.; Shi, Y. F. et al. Utilizing van der Waals slippery interfaces to enhance the electrochemical stability of silicon film anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 13442–13451.

[40]

Chen, Q. L.; Zheng, H. F.; Yang, Y. F.; Xie, Q. S.; Ma, Y. T.; Wang, L. S.; Peng, D. L. Ion- and electron-conductive buffering layer-modified Si film for use as a high-rate long-term lithium-ion battery anode. ChemSusChem 2019, 12, 252–260.

[41]

Liu, J. J.; Yang, Y.; Lyu, P.; Nachtigall, P.; Xu, Y. X. Few-layer silicene nanosheets with superior lithium-storage properties. Adv. Mater. 2018, 30, e1800838.

[42]

Sadeghipari, M.; Mohajerzadeh, M. A.; Hajmirzaheydarali, M.; Mashayekhi, A.; Mohajerzadeh, S. A novel approach to realize Si-based porous wire-in-tube nanostructures for high-performance lithium-ion batteries. Small 2018, 14, e1800615.

[43]

Schmerling, M.; Fenske, D.; Peters, F.; Schwenzel, J.; Busse, M. Lithiation behavior of silicon nanowire anodes for lithium-ion batteries: Impact of functionalization and porosity. ChemPhysChem 2018, 19, 123–129.

[44]

Xu, S.; Fan, X. F.; Liu, J. L.; Singh, D. J.; Jiang, Q.; Zheng, W. T. Adsorption of Li on single-layer silicene for anodes of Li-ion batteries. Phys. Chem. Chem. Phys. 2018, 20, 8887–8896.

[45]

Xu, T.; Wang, D.; Qiu, P.; Zhang, J.; Wang, Q.; Xia, B. J.; Xie, X. H. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries. Nanoscale 2018, 10, 16638–16644.

[46]

Liu, Y. X.; Qin, L. J.; Liu, F.; Fan, Y. M.; Ruan, J. J.; Zhang, S. J. Interpenetrated 3D porous silicon as high stable anode material for Li-Ion battery. J. Power Sources 2018, 406, 167–175.

[47]

Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.

[48]

Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

[49]

Yu, B. C.; Hwa, Y.; Park, C. M.; Sohn, H. J. Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. J. Mater. Chem. A 2013, 1, 4820–4825.

[50]

Song, H. C.; Wang, S.; Song, X. Y.; Yang, H. F.; Du, G. H.; Yu, L. W.; Xu, J.; He, P.; Zhou, H. S.; Chen, K. J. A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes. J. Mater. Chem. A 2018, 6, 7877–7886.

[51]

Li, Z. H.; He, Q.; He, L.; Hu, P.; Li, W.; Yan, H. W.; Peng, X. Z.; Huang, C. Y.; Mai, L. Q. Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes. J. Mater. Chem. A 2017, 5, 4183–4189.

[52]

Li, H. D.; Li, H. Y.; Lai, Y. Z.; Yang, Z. W.; Yang, Q.; Liu, Y.; Zheng, Z.; Liu, Y. X.; Sun, Y.; Zhong, B. H. et al. Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability. Adv. Energy Mater. 2022, 12, 2102181.

[53]

Meng, X.; Sasaki, K.; Sano, K.; Yuan, P. L.; Tatsuoka, H. Synthesis of crystalline Si-based nanosheets by extraction of Ca from CaSi2 in inositol hexakisphosphate solution. Jpn. J. Appl. Phys. 2017, 56, 05DE02.

[54]

Wang, X. H.; Sun, L. M.; Hu, X. N.; Susantyoko, R. A.; Zhang, Q. Ni-Si nanosheet network as high performance anode for Li ion batteries. J. Power Sources 2015, 280, 393–396.

[55]

Zhang, L.; Deng, J. W.; Liu, L. F.; Si, W. P.; Oswald, S.; Xi, L. X.; Kundu, M.; Ma, G. Z.; Gemming, T.; Baunack, S. et al. Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Adv. Mater. 2014, 26, 4527–4532.

[56]

Sämann, C.; Kelesiadou, K.; Hosseinioun, S. S.; Wachtler, M.; Köhler, J. R.; Birke, K. P.; Schubert, M. B.; Werner, J. H. Laser porosificated silicon anodes for lithium ion batteries. Adv. Energy Mater. 2018, 8, 1701705.

[57]

Zhang, X. H.; Qiu, X. Y.; Kong, D. B.; Zhou, L.; Li, Z. H.; Li, X. L.; Zhi, L. J. Silicene flowers: A dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano 2017, 11, 7476–7484.

[58]

Chen, M.; Jing, Q. S.; Sun, H. B.; Xu, J. Q.; Yuan, Z. Y.; Ren, J. T.; Ding, A. X.; Huang, Z. Y.; Dong, M. Y. Engineering the core–shell-structured NCNTs-Ni2Si@porous Si composite with robust Ni–Si interfacial bonding for high-performance Li-ion batteries. Langmuir 2019, 35, 6321–6332.

[59]

Gao, P. B.; Huang, X.; Zhao, Y. T.; Hu, X. D.; Cen, D. C.; Gao, G. H.; Bao, Z. H.; Mei, Y. F.; Di, Z. F.; Wu, G. M. Formation of Si hollow structures as promising anode materials through reduction of silica in AlCl3-NaCl molten salt. ACS Nano 2018, 12, 11481–11490.

[60]

Yu, B. C.; Hwa, Y.; Kim, J. H.; Sohn, H. J. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim. Acta 2014, 117, 426–430.

[61]

Yang, L. Y.; Li, S. T.; Wang, S. Y.; Zhu, K. J.; Liu, J.; Chen, Y. W.; Tang, S. S.; Mi, H. Y.; Chen, F. J. A unique intricate hollow Si nanocomposite designed for lithium storage. J. Alloys Compd. 2018, 758, 177–183.

[62]

Jiang, T.; Zhang, S. C.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem. Commun. 2007, 9, 930–934.

[63]

Nguyen, C. C.; Song, S. W. Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries. Electrochim. Acta 2010, 55, 3026–3033.

[64]

Bao, Q.; Lee, J.; Duh, J. G. Building 3D porous, elastic and hydrophilic current collectors: Prolonging the cycling life of Si based anode for lithium ion batteries. Mater. Lett. 2017, 202, 28–31.

[65]

Fu, K.; Yildiz, O.; Bhanushali, H.; Wang, Y. X.; Stano, K.; Xue, L. G.; Zhang, X. W.; Bradford, P. D. Aligned carbon nanotube-silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes. Adv. Mater. 2013, 25, 5109–5114.

[66]

Kim, S. W.; Yun, J. H.; Son, B.; Lee, Y. G.; Kim, K. M.; Lee, Y. M.; Cho, K. Y. Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries. Adv. Mater. 2014, 26, 2977–2982.

[67]

Liu, Z. J.; Bai, S.; Liu, B. L.; Guo, P. Q.; Lv, M. Z.; Liu, D. Q.; He, D. Y. Interfacial modification of a lightweight carbon foam current collector for high-energy density Si/LCO lithium-ion batteries. J. Mater. Chem. A 2017, 5, 13168–13175.

[68]

Zhang, W.; Zuo, P. J.; Chen, C.; Ma, Y. L.; Cheng, X. Q.; Du, C. Y.; Gao, Y. Z.; Yin, G. P. Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries. J. Power Sources 2016, 312, 216–222.

[69]

Wang, J.; Zhou, M. J.; Tan, G. Q.; Chen, S.; Wu, F.; Lu, J.; Amine, K. Encapsulating micro-nano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale 2015, 7, 8023–8034.

[70]

Zhao, T. T.; Zhu, D. L.; Li, W. R.; Li, A. J.; Zhang, J. J. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes. J. Power Sources 2019, 439, 227027.

[71]

Polat, B. D.; Keles, O. The effect of copper coating on nanocolumnar silicon anodes for lithium ion batteries. Thin Solid Films 2015, 589, 543–550.

[72]

Chen, J. J.; Lu, X. Y.; Sun, J.; Xu, F. F. Si@C nanosponges application for lithium ions batteries synthesized by templated magnesiothermic route. Mater. Lett. 2015, 152, 256–259.

[73]

Sourice, J.; Quinsac, A.; Leconte, Y.; Sublemontier, O.; Porcher, W.; Haon, C.; Bordes, A.; De Vito, E.; Boulineau, A.; Larbi, S. J. S. et al. One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 6637–6644.

[74]

Li, W. Y.; Tang, Y. B.; Kang, W. P.; Zhang, Z. Y.; Yang, X.; Zhu, Y.; Zhang, W. J.; Lee, C. S. Core–shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 2015, 11, 1345–1351.

[75]

Yun, Q. B.; Qin, X. Y.; He, Y. B.; Lv, W.; Kaneti, Y. V.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Micron-sized spherical Si/C hybrids assembled via water/oil system for high-performance lithium ion battery. Electrochim. Acta 2016, 211, 982–988.

[76]

Ensafi, A. A.; Abarghoui, M. M.; Rezaei, B. Metal (Ni and Bi) coated porous silicon nanostructure, high-performance anode materials for lithium ion batteries with high capacity and stability. J. Alloys Compd. 2017, 712, 233–240.

[77]

Gao, A.; Mukherjee, S.; Srivastava, I.; Daly, M.; Singh, C. V. Atomistic origins of ductility enhancement in metal oxide coated silicon nanowires for Li-ion battery anodes. Adv. Mater. Interfaces 2017, 4, 1700920.

[78]

Wang, Y.; Chen, L.; Liu, H. T.; Xiong, Z. M.; Zhao, L.; Liu, S. H.; Huang, C. M.; Zhao, Y. M. Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chem. Eng. J. 2019, 356, 746–755.

[79]

Yang, J. P.; Wang, Y. X.; Li, W.; Wang, L. J.; Fan, Y. C.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C. et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 2017, 29, 1700523.

[80]

Yoon, T.; Bok, T.; Kim, C.; Na, Y.; Park, S.; Kim, K. S. Mesoporous silicon hollow nanocubes derived from metal-organic framework template for advanced lithium-ion battery anode. ACS Nano 2017, 11, 4808–4815.

[81]

Zhang, Q. B.; Chen, H. X.; Luo, L. L.; Zhao, B. T.; Luo, H.; Han, X.; Wang, J. W.; Wang, C. M.; Yang, Y.; Zhu, T. et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ. Sci. 2018, 11, 669–681.

[82]

Kwon, H. T.; Park, A. R.; Lee, S. S.; Cho, H.; Jung, H.; Park, C. M. Nanostructured Si-FeSi2-graphite-C composite: An optimized and practical solution for Si-based anodes for superior Li-ion batteries. J. Electrochem. Soc. 2019, 166, A2221–A2229.

[83]

Wang, S. G.; Wang, T.; Zhong, Y.; Deng, Q. R.; Mao, Y. W.; Wang, G. M. Structure and electrochemical properties of Si-Mn/C core–shell composites for lithium-ion batteries. JOM 2020, 72, 3037–3045.

[84]

Chen, H. D.; He, S. G.; Hou, X. H.; Wang, S. F.; Chen, F. M.; Qin, H. Q.; Xia, Y. C.; Zhou, G. F. Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode. Electrochim. Acta 2019, 312, 242–250.

[85]

Chen, S. Q.; Shen, L. F.; van Aken, P. A.; Maier, J.; Yu, Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 2017, 29, 1605650.

[86]

Kim, J. M.; Ko, D. J.; Oh, J.; Lee, J.; Hwang, T.; Jeon, Y.; Hooch Antink, W.; Piao, Y. Z. Electrochemically exfoliated graphene as a novel microwave susceptor: The ultrafast microwave-assisted synthesis of carbon-coated silicon-graphene film as a lithium-ion battery anode. Nanoscale 2017, 9, 15582–15590.

[87]

Li, X. L.; Yan, P. F.; Xiao, X. C.; Woo, J. H.; Wang, C. M.; Liu, J.; Zhang, J. G. Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 2017, 10, 1427–1434.

[88]

Li, Z. H.; Li, Z. P.; Zhong, W. H.; Li, C. F.; Li, L. Q.; Zhang, H. Y. Facile synthesis of ultrasmall Si particles embedded in carbon framework using Si-carbon integration strategy with superior lithium ion storage performance. Chem. Eng. J. 2017, 319, 1–8.

[89]

Liu, N. T.; Mamat, X.; Jiang, R. Y.; Tong, W.; Huang, Y. D.; Jia, D. Z.; Li, Y. T.; Wang, L.; Wågberg, T.; Hu, G. Z. Facile high-voltage sputtering synthesis of three-dimensional hierarchical porous nitrogen-doped carbon coated Si composite for high performance lithium-ion batteries. Chem. Eng. J. 2018, 343, 78–85.

[90]

Mi, H. W.; Yang, X. D.; Li, Y. L.; Zhang, P. X.; Sun, L. N. A self-sacrifice template strategy to fabricate yolk–shell structured silicon@void@carbon composites for high-performance lithium-ion batteries. Chem. Eng. J. 2018, 351, 103–109.

[91]

Prakash, S.; Zhang, C. F.; Park, J. D.; Razmjooei, F.; Yu, J. S. Silicon core–mesoporous shell carbon spheres as high stability lithium-ion battery anode. J. Colloid Interface Sci. 2019, 534, 47–54.

[92]

Shen, X. D.; Jiang, W. F.; Sun, H. J.; Wang, Y.; Dong, A. G.; Hu, J. H.; Yang, D. Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries. J. Alloys Compd. 2017, 691, 178–184.

[93]

Shi, J. W.; Gao, H. Y.; Hu, G. X.; Zhang, Q. Core–shell structured Si@C nanocomposite for high-performance Li-ion batteries with a highly viscous gel as precursor. J. Power Sources 2019, 438, 227001.

[94]

Wang, B.; Ryu, J.; Choi, S.; Zhang, X. H.; Pribat, D.; Li, X. L.; Zhi, L. J.; Park, S.; Ruoff, R. S. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13, 2307–2315.

[95]

Xu, Y. H.; Zhu, Y. J.; Han, F. D.; Luo, C.; Wang, C. S. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1400753.

[96]

Yang, T.; Tian, X. D.; Li, X.; Wang, K.; Liu, Z. J.; Guo, Q. G.; Song, Y. Double core–shell Si@C@SiO2 for anode material of lithium-ion batteries with excellent cycling stability. Chem.—Eur. J. 2017, 23, 2165–2170.

[97]

Yao, W. Q.; Chen, J.; Zhan, L.; Wang, Y. L.; Yang, S. B. Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage. ACS Appl. Mater. Interfaces 2017, 9, 39371–39379.

[98]

Zhang, C. J.; Liang, F. H.; Zhang, W.; Liu, H.; Ge, M. Z.; Zhang, Y. Y.; Dai, J. M.; Wang, H. L.; Xing, G. C.; Lai, Y. K. et al. Constructing mechanochemical durable and self-healing superhydrophobic surfaces. ACS Omega 2020, 5, 986–994.

[99]

Zhang, H. L.; Xu, J. Q.; Zhang, J. J. Preparation and electrochemical properties of core–shelled silicon-carbon composites as anode materials for lithium-ion batteries. J. Appl. Electrochem. 2019, 49, 1123–1132.

[100]

Chen, F. Q.; Han, J. W.; Kong, D. B.; Yuan, Y. F.; Xiao, J.; Wu, S. C.; Tang, D. M.; Deng, Y. Q.; Lv, W.; Lu, J. et al. 1000 Wh·L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl. Sci. Rev. 2021, 8, nwab012.

[101]

Lee, J. I.; Park, S. High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching. Nano Energy 2013, 2, 146–152.

[102]

Si, Q.; Hanai, K.; Ichikawa, T.; Phillipps, M. B.; Hirano, A.; Imanishi, N.; Yamamoto, O.; Takeda, Y. Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. J. Power Sources 2011, 196, 9774–9779.

[103]

Kim, K. W.; Park, H.; Lee, J. G.; Kim, J.; Kim, Y. U.; Ryu, J. H.; Kim, J. J.; Oh, S. M. Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries. Electrochim. Acta 2013, 103, 226–230.

[104]

Kobayashi, Y.; Seki, S.; Mita, Y.; Ohno, Y.; Miyashiro, H.; Charest, P.; Guerfi, A.; Zaghib, K. High reversible capacities of graphite and SiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries. J. Power Sources 2008, 185, 542–548.

[105]

Lee, D. J.; Ryou, M. H.; Lee, J. N.; Kim, B. G.; Lee, Y. M.; Kim, H. W.; Kong, B. S.; Park, J. K.; Choi, J. W. Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries. Electrochem. Commun. 2013, 34, 98–101.

[106]

Park, C. M.; Choi, W.; Hwa, Y.; Kim, J. H.; Jeong, G.; Sohn, H. J. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 2010, 20, 4854–4860.

[107]

Xu, S.; Hou, X. D.; Wang, D. N.; Zuin, L.; Zhou, J. G.; Hou, Y.; Mann, M. Insights into the effect of heat treatment and carbon coating on the electrochemical behaviors of SiO anodes for Li-ion batteries. Adv. Energy Mater. 2022, 12, 2200127.

[108]

Park, M.; Lee, D.; Shin, S.; Kim, H. J.; Hyun, J. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline. Carbohydr. Polym. 2016, 140, 43–50.

[109]

Li, G.; Huang, L. B.; Yan, M. Y.; Li, J. Y.; Jiang, K. C.; Yin, Y. X.; Xin, S.; Xu, Q.; Guo, Y. G. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy 2020, 74, 104890.

[110]

Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409–2413.

[111]

Luo, W.; Shen, D. K.; Zhang, R. Y.; Zhang, B. W.; Wang, Y. X.; Dou, S. X.; Liu, H. K.; Yang, J. P. Germanium nanograin decoration on carbon shell: Boosting lithium-storage properties of silicon nanoparticles. Adv. Funct. Mater. 2016, 26, 7800–7806.

[112]

Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem. Mater. 2012, 24, 1306–1315.

[113]

Zhao, Z. Y.; Han, J. W.; Chen, F. Q.; Xiao, J.; Zhao, Y. F.; Zhang, Y. F.; Kong, D. B.; Weng, Z.; Wu, S. C.; Yang, Q. H. Liquid metal remedies silicon microparticulates toward highly stable and superior volumetric lithium storage. Adv. Energy Mater. 2022, 12, 2103565.

[114]

Jeong, G.; Kim, Y. U.; Krachkovskiy, S. A.; Lee, C. K. A nanostructured SiAl0.2O anode material for lithium batteries. Chem. Mater. 2010, 22, 5570–5579.

[115]

Kim, K.; Choi, H.; Kim, J. H. Effect of carbon coating on nano-Si embedded SiOx-Al2O3 composites as lithium storage materials. Appl. Surf. Sci. 2017, 416, 527–535.

[116]

Lotfabad, E. M.; Kalisvaart, P.; Kohandehghan, A.; Cui, K.; Kupsta, M.; Farbod, B.; Mitlin, D. Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 2504–2516.

[117]

Song, Y. H.; Zuo, L.; Chen, S. H.; Wu, J. F.; Hou, H. Q.; Wang, L. Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries. Electrochim. Acta 2015, 173, 588–594.

[118]

Jeong, G.; Kim, J. H.; Kim, Y. U.; Kim, Y. J. Multifunctional TiO2 coating for a SiO anode in Li-ion batteries. J. Mater. Chem. 2012, 22, 7999–8004.

[119]

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z. N.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

[120]

Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X. Y.; Yuca, N.; Battaglia, V. S.; Yang, W. L.; Liu, G. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2565–2571.

[121]

Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. F.; MoEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016, 10, 3702–3713.

[122]

Wang, Q. Y.; Zhu, M.; Chen, G. R.; Dudko, N.; Li, Y.; Liu, H. J.; Shi, L. Y.; Wu, G.; Zhang, D. S. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism. Adv. Mater. 2022, 34, 2109658.

[123]

Guo, J. P.; Zhao, G. M.; Xie, T.; Dong, D. Q.; Ma, C. L.; Su, L. H.; Gong, L. Y.; Lou, X. D.; Guo, X. Y.; Wang, J. et al. Carbon/polymer bilayer-coated Si-SiOx electrodes with enhanced electrical conductivity and structural stability. ACS Appl. Mater. Interfaces 2020, 12, 19023–19032.

[124]

Jiang, S. S.; Hu, B.; Sahore, R.; Zhang, L. H.; Liu, H. H.; Zhang, L.; Lu, W. Q.; Zhao, B.; Zhang, Z. C. Surface-functionalized silicon nanoparticles as anode material for lithium-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 44924–44931.

[125]

Li, C.; Shi, T. F.; Li, D. C.; Yoshitake, H.; Wang, H. Y. Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries. RSC Adv. 2016, 6, 34715–34723.

[126]

Zhao, J.; Lu, Z. D.; Wang, H. T.; Liu, W.; Lee, H. W.; Yan, K.; Zhuo, D.; Lin, D. C.; Liu, N.; Cui, Y. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 8372–8375.

[127]

Guo, J. P.; Wu, W.; Wang, J.; Zhang, T.; Wang, R.; Xu, D. W.; Wang, C. Y.; Deng, Y. H. Artificial solid electrolyte interphase modified porous SiOx composite as anode material for lithium ion batteries. Solid State Ionics 2020, 347, 115272.

[128]

Li, J. T.; Wu, Z. Y.; Lu, Y. Q.; Zhou, Y.; Huang, Q. S.; Huang, L.; Sun, S. G. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density. Adv. Energy Mater. 2017, 7, 1701185.

[129]

Chou, S. L.; Pan, Y. D.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Small things make a big difference: Binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 2014, 16, 20347–20359.

[130]

Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochem. Solid-State Lett. 2008, 11, A76–A80.

[131]

Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G. R.; Lin, Z.; Liu, G.; Zhang, S. Q. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 2018, 118, 8936–8982.

[132]

Chen, L. B.; Xie, X. H.; Xie, J. Y.; Wang, K.; Yang, J. Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J. Appl. Electrochem. 2006, 36, 1099–1104.

[133]

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

[134]

Lopez, J.; Chen, Z.; Wang, C.; Andrews, S. C.; Cui, Y.; Bao, Z. N. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes. ACS Appl. Mater. Interfaces 2016, 8, 2318–2324.

[135]

Munaoka, T.; Yan, X. Z.; Lopez, J.; To, J. W. F.; Park, J.; Tok, J. B. H.; Cui, Y.; Bao, Z. N. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater. 2018, 8, 1703138.

[136]

Gordon, R.; Orias, R.; Willenbacher, N. Effect of carboxymethyl cellulose on the flow behavior of lithium-ion battery anode slurries and the electrical as well as mechanical properties of corresponding dry layers. J. Mater. Sci. 2020, 55, 15867–15881.

[137]

Hu, B.; Jiang, S. S.; Shkrob, I. A.; Zhang, J. J.; Trask, S. E.; Polzin, B. J.; Jansen, A.; Chen, W.; Liao, C.; Zhang, Z. C. et al. Understanding of pre-lithiation of poly(acrylic acid) binder: Striking the balances between the cycling performance and slurry stability for silicon-graphite composite electrodes in Li-ion batteries. J. Power Sources 2019, 416, 125–131.

[138]

Li, J.; Lewis, R. B.; Dahn, J. R. Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 2007, 10, A17–A20.

[139]

Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

[140]

Yue, L.; Zhang, L. Z.; Zhong, H. X. Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries. J. Power Sources 2014, 247, 327–331.

[141]

Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J. Phys. Chem. C 2011, 115, 13487–13495.

[142]

Aoki, S.; Han, Z. J.; Yamagiwa, K.; Yabuuchi, N.; Murase, M.; Okamoto, K.; Kiyosu, T.; Satoh, M.; Komaba, S. Acrylic acid-based copolymers as functional binder for silicon/graphite composite electrode in lithium-ion batteries. J. Electrochem. Soc. 2015, 162, A2245–A2249.

[143]

Nguyen, C. C.; Seo, D. M.; Chandrasiri, K. W. D. K.; Lucht, B. L. Improved cycling performance of a Si nanoparticle anode utilizing citric acid as a surface-modifying agent. Langmuir 2017, 33, 9254–9261.

[144]

Zhang, H.; Liu, S. W.; Yu, X. F.; Chen, S. L. Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive. J. Alloys Compd. 2020, 822, 153664.

[145]

Wang, F.; Song, C. S.; Zhao, B. X.; Sun, L.; Du, H. B. One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries. Chem. Commun. 2020, 56, 1109–1112.

[146]

Zhang, C. C.; Cai, X.; Chen, W. Y.; Yang, S. Y.; Xu, D. H.; Fang, Y. P.; Yu, X. Y. 3D porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 9930–9939.

[147]

Ma, C. L.; Wang, Z. R.; Zhao, Y.; Li, Y.; Shi, J. A novel raspberry-like yolk–shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 2020, 844, 156201.

[148]

Jia, H. P.; Li, X. L.; Song, J. H.; Zhang, X.; Luo, L. L.; He, Y.; Li, B. S.; Cai, Y.; Hu, S. Y.; Xiao, X. C. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 2020, 11, 1474.

[149]

Park, S. W.; Shim, H. W.; Kim, J. C.; Kim, D. W. Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries. J. Alloys Compd. 2017, 728, 490–496.

[150]

Kim, S. J.; Moon, S. H.; Kim, M. C.; So, J. Y.; Han, S. B.; Kwak, D. H.; Bae, W. G.; Park, K. W. Micro-patterned 3D Si electrodes fabricated using an imprinting process for high-performance lithium-ion batteries. J. Appl. Electrochem. 2018, 48, 1057–1068.

[151]

Wu, J. L.; Liu, J. H.; Wang, Z.; Gong, X. Z.; Wang, Y. A new design for Si wears double jackets used as a high-performance lithium-ion battery anode. Chem. Eng. J. 2019, 370, 565–572.

[152]

Song, J. J.; Guo, S. W.; Kou, L. J.; Kajiyoshi, K.; Su, J. X.; Huang, W. R.; Li, Y. F.; Zheng, P. Controllable synthesis honeycomb-like structure SiOx/C composites as anode for high-performance lithium-ion batteries. Vacuum 2021, 186, 110044.

[153]

Mishra, K.; Zheng, J. M.; Patel, R.; Estevez, L.; Jia, H. P.; Luo, L. L.; El-Khoury, P. Z.; Li, X. L.; Zhou, X. D.; Zhang, J. G. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction. Electrochim. Acta 2018, 269, 509–516.

[154]

Ma, B. J.; Lu, B.; Luo, J.; Deng, X. L.; Wu, Z. Y.; Wang, X. Y. The hollow mesoporous silicon nanobox dually encapsulated by SnO2/C as anode material of lithium ion battery. Electrochim. Acta 2018, 288, 61–70.

[155]

Tang, C. J.; Liu, Y. N.; Xu, C.; Zhu, J. X.; Wei, X. J.; Zhou, L.; He, L.; Yang, W.; Mai, L. Ultrafine nickel-nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv. Funct. Mater. 2018, 28, 1704561.

[156]

Jia, H. P.; Zheng, J. M.; Song, J. H.; Luo, L. L.; Yi, R.; Estevez, L.; Zhao, W. G.; Patel, R.; Li, X. L.; Zhang, J. G. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 2018, 50, 589–597.

[157]

Yang, W. T.; Ying, H. J.; Zhang, S. L.; Guo, R. N.; Wang, J. L.; Han, W. Q. Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials. Electrochim. Acta 2020, 337, 135687.

[158]

Yang, Y. H.; Liu, S.; Bian, X. F.; Feng, J. K.; An, Y. L.; Yuan, C. Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode. ACS Nano 2018, 12, 2900–2908.

[159]

Xu, Q.; Li, J. Y.; Sun, J. K.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 2017, 7, 1601481.

[160]

Kim, D.; Li, N.; Sheehan, C. J.; Yoo, J. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A·g−1. Nanoscale 2018, 10, 7343–7351.

[161]

Stokes, K.; Boonen, W.; Geaney, H.; Kennedy, T.; Borsa, D.; Ryan, K. M. Tunable core–shell nanowire active material for high capacity Li-ion battery anodes comprised of PECVD deposited aSi on directly grown Ge nanowires. ACS Appl. Mater. Interfaces 2019, 11, 19372–19380.

[162]

Yang, J. C.; Liu, J.; Zhao, C. N.; Zhang, W. Q.; Li, X. C. Core–shell structured heterohierachical porous Si@graphene microsphere for high-performance lithium-ion battery anodes. Mater. Lett. 2020, 266, 127484.

[163]

Li, Z. L.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Zhang, Y.; Du, Z. H.; Teng, Y. Q.; Zhao, L. N.; Zhu, Z. M. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 2018, 28, 1605711.

[164]

Li, B. B.; Jiang, Y. Z.; Jiang, F.; Cao, D. X.; Wang, H. K.; Niu, C. M. Bird’s nest-like nanographene shell encapsulated Si nanoparticles—Their structural and Li anode properties. J. Power Sources 2017, 341, 46–52.

[165]

Zhao, T. L.; Meng, Y.; Yin, H. S.; Guo, K. J.; Ji, R. X.; Zhang, G. L.; Zhang, Y. X. Beneficial effect of green water-soluble binders on SiOx/graphite anode for lithium-ion batteries. Chem. Phys. Lett. 2020, 742, 137145.

[166]

Wang, X. X.; Liu, J.; Gong, Z. L.; Huang, C. F.; He, S. S.; Yu, L. B.; Gan, L. H.; Long, M. N. Influence of degree of substitution of carboxymethyl cellulose on high performance silicon anode in lithium-ion batteries. Electrochemistry 2019, 87, 94–99.

[167]

Kim, S.; Jeong, Y. K.; Wang, Y.; Lee, H.; Choi, J. W. A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries. Adv. Mater. 2018, 30, e1707594.

[168]

Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid. ACS Appl. Mater. Interfaces 2010, 2, 3004–3010.

[169]

Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem., Int. Ed. 2012, 51, 8762–8767.

[170]

Hwang, C.; Joo, S.; Kang, N. R.; Lee, U.; Kim, T. H.; Jeon, Y.; Kim, J.; Kim, Y. J.; Kim, J. Y.; Kwak, S. K. et al. Breathing silicon anodes for durable high-power operations. Sci. Rep. 2015, 5, 14433.

[171]

Yoon, D.-E.; Hwang, C.; Kang, N.-R.; Lee, U.; Ahn, D.; Kim, J.-Y.; Song, H.-K. Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders. ACS Appl. Mater. Interfaces 2016, 8, 4042–4047.

[172]

Urbanski, A.; Omar, A.; Guo, J.; Janke, A.; Reuter, U.; Malanin, M.; Schmidt, F.; Jehnichen, D.; Holzschuh, M.; Simon, F. et al. An efficient two-polymer binder for high-performance silicon nanoparticle-based lithium-ion batteries: A systematic case study with commercial polyacrylic acid and polyvinyl butyral polymers. J. Electrochem. Soc. 2019, 166, A5275–A5286.

[173]

Huang, Q. Y.; Wan, C. Y.; Loveridge, M.; Bhagat, R. Partially neutralized polyacrylic acid/poly(vinyl alcohol) blends as effective binders for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 6890–6898.

[174]

Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

[175]

Wang, X. Y.; Zhang, Y.; Shi, Y. J.; Zeng, X. Y.; Tang, R. X.; Wei, L. M. Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries. Ionics 2019, 25, 5323–5331.

[176]

Li, Z. H.; Zhang, Y. P.; Liu, T. F.; Gao, X. H.; Li, S. Y.; Ling, M.; Liang, C. D.; Zheng, J. C.; Lin, Z. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 2020, 10, 1903110.

[177]

Li, J. J.; Zhang, G. Z.; Yang, Y.; Yao, D. H.; Lei, Z. W.; Li, S.; Deng, Y. H.; Wang, C. Y. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. J. Power Sources 2018, 406, 102–109.

[178]

Wang, J. T.; Wan, C. C.; Hong, J. L. Polymer blends of pectin/poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries. ChemElectroChem 2020, 7, 3106–3115.

[179]

Cao, P. F.; Naguib, M.; Du, Z. J.; Stacy, E.; Li, B. R.; Hong, T.; Xing, K. Y.; Voylov, D. N.; Li, J. L.; Wood, D. L. et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 3470–3478.

[180]

Gao, Y.; Qiu, X. T.; Wang, X. L.; Gu, A. Q.; Zhang, L.; Chen, X. C.; Li, J. F.; Yu, Z. L. Chitosan-g-poly(acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 16274–16283.

[181]

Cao, P. F.; Yang, G.; Li, B. R.; Zhang, Y. M.; Zhao, S.; Zhang, S.; Erwin, A.; Zhang, Z. C.; Sokolov, A. P.; Nanda, J. et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes. ACS Energy Lett. 2019, 4, 1171–1180.

[182]

Feng, K.; Li, M.; Zhang, Y. N.; Liu, W. W.; Kashkooli, A. G.; Xiao, X. C.; Chen, Z. W. Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for high-energy-density lithium-ion battery anode. Electrochim. Acta 2019, 309, 157–165.

[183]

Guo, R. N.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Han, W. Q. Preparation of an amorphous cross-linked binder for silicon anodes. ChemSusChem 2019, 12, 4838–4845.

[184]

He, D. L.; Li, P.; Wang, W.; Wan, Q.; Zhang, J.; Xi, K.; Ma, X. M.; Liu, Z. W.; Zhang, L.; Qu, X. H. Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage. Small 2020, 16, e1905736.

[185]

Jeschull, F.; Scott, F.; Trabesinger, S. Interactions of silicon nanoparticles with carboxymethyl cellulose and carboxylic acids in negative electrodes of lithium-ion batteries. J. Power Sources 2019, 431, 63–74.

[186]

Son, J.; Vo, T. N.; Cho, S.; Preman, A. N.; Kim, I. T.; Ahn, S. K. Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries. J. Power Sources 2020, 458, 228054.

[187]

Tian, M.; Wu, P. Y. Nature plant polyphenol coating silicon submicroparticle conjugated with polyacrylic acid for achieving a high-performance anode of lithium-ion battery. ACS Appl. Energy Mater. 2019, 2, 5066–5073.

[188]

Zhu, X. Y.; Zhang, F.; Zhang, L.; Zhang, L. Y.; Song, Y. Z.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X. G.; Sun, J. Y. et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv. Funct. Mater. 2018, 28, 1705015.

[189]

Cai, Y. J.; Li, Y. Y.; Jin, B. Y.; Ali, A.; Ling, M.; Cheng, D. G.; Lu, J. G.; Hou, Y.; He, Q. G.; Zhan, X. L. et al. Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 46800–46807.

[190]

Chen, C.; Chen, F.; Liu, L. M.; Zhao, J. W.; Wang, F. Cross-linked hyperbranched polyethylenimine as an efficient multidimensional binder for silicon anodes in lithium-ion batteries. Electrochim. Acta 2019, 326, 134964.

[191]

Zhu, L. L.; Du, F. H.; Zhuang, Y.; Dai, H.; Cao, H. S.; Adkins, J.; Zhou, Q.; Zheng, J. W. Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for lithium ion batteries. J. Electroanal. Chem. 2019, 845, 22–30.

[192]

Liu, N.; He, W. J.; Liao, H. J.; Li, Z. W.; Jiang, J. M.; Zhang, X. G.; Dou, H. Polydopamine grafted cross-linked polyacrylamide as robust binder for SiO/C anode toward high-stability lithium-ion battery. J. Mater. Sci. 2021, 56, 6337–6348.

[193]

Assresahegn, B. D.; Bélanger, D. Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives. J. Power Sources 2017, 345, 190–201.

[194]

Chae, S.; Kwak, W. J.; Han, K. S.; Li, S.; Engelhard, M. H.; Hu, J. T.; Wang, C. M.; Li, X. L.; Zhang, J. G. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range. ACS Energy Lett. 2021, 6, 387–394.

[195]

Guo, J.; Omar, A.; Urbanski, A.; Oswald, S.; Uhlmann, P.; Giebeler, L. Electrochemical behavior of microparticulate silicon anodes in ether-based electrolytes: Why does LiNO3 affect negatively? ACS Appl. Energy Mater. 2019, 2, 4411–4420.

[196]

Han, B. H.; Liao, C.; Dogan, F.; Trask, S. E.; Lapidus, S. H.; Vaughey, J. T.; Key, B. Using mixed salt electrolytes to stabilize silicon anodes for lithium-ion batteries via in situ formation of Li-M-Si ternaries (M = Mg, Zn, Al, Ca). ACS Appl. Mater. Interfaces 2019, 11, 29780–29790.

[197]

Huang, F. F.; Ma, G. Q.; Wen, Z. Y.; Jin, J.; Xu, S. Q.; Zhang, J. J. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J. Mater. Chem. A 2018, 6, 1612–1620.

[198]

Jia, H. P.; Zou, L. F.; Gao, P. Y.; Cao, X.; Zhao, W. G.; He, Y.; Engelhard, M. H.; Burton, S. D.; Wang, H.; Ren, X. D. et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater. 2019, 9, 1900784.

[199]

Louli, A. J.; Ellis, L. D.; Dahn, J. R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance. Joule 2019, 3, 745–761.

[200]

Luo, W.; Chen, X. Q.; Xia, Y.; Chen, M.; Wang, L. J.; Wang, Q. Q.; Li, W.; Yang, J. P. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083.

[201]

Markevich, E.; Salitra, G.; Aurbach, D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Lett. 2017, 2, 1337–1345.

[202]

Michan, A. L.; Divitini, G.; Pell, A. J.; Leskes, M.; Ducati, C.; Grey, C. P. Solid electrolyte interphase growth and capacity loss in silicon electrodes. J. Am. Chem. Soc. 2016, 138, 7918–7931.

[203]

Peng, Z.; Cao, X.; Gao, P. Y.; Jia, H. P.; Ren, X. D.; Roy, S.; Li, Z. D.; Zhu, Y.; Xie, W. P.; Liu, D. Y. et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 2020, 30, 2001285.

[204]

Haregewoin, A. M.; Wotango, A. S.; Hwang, B. J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci. 2016, 9, 1955–1988.

[205]

Gebresilassie Eshetu, G.; Martinez-Ibañez, M.; Sánchez-Diez, E.; Gracia, I.; Li, C. M.; Rodriguez-Martinez, L. M.; Rojo, T.; Zhang, H.; Armand, M. Electrolyte additives for room-temperature, sodium-based, rechargeable batteries. Chem.—Asian J. 2018, 13, 2770–2780.

[206]

Choi, N. S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S. S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 2006, 161, 1254–1259.

[207]

Jin, Y. T.; Kneusels, N. J. H.; Magusin, P. C. M. M.; Kim, G.; Castillo-Martínez, E.; Marbella, L. E.; Kerber, R. N.; Howe, D. J.; Paul, S.; Liu, T. et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 2017, 139, 14992–15004.

[208]

Jung, R.; Metzger, M.; Haering, D.; Solchenbach, S.; Marino, C.; Tsiouvaras, N.; Stinner, C.; Gasteiger, H. A. Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries. J. Electrochem. Soc. 2016, 163, A1705–A1716.

[209]

Zhou, M.; Jin, C.; Zheng, W.; Liang, Y. R.; Shi, Q.; Yuan, Y. N.; Zheng, H. H. A novel MEMP-DFOB electrolyte additive to improve low-high temperature performances of SiO/Gr anode based pouch full cells. J. Electroanal. Chem. 2021, 898, 115639.

[210]

Matsumoto, K.; Inoue, K.; Utsugi, K. A highly safe battery with a non-flammable triethyl-phosphate-based electrolyte. J. Power Sources 2015, 273, 954–958.

[211]

Cao, Z.; Zheng, X. T.; Qu, Q. T.; Huang, Y. H.; Zheng, H. H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv. Mater. 2021, 33, 2103178.

[212]

Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. J. Power Sources 2009, 194, 601–609.

[213]

Molina Piper, D.; Evans, T.; Leung, K.; Watkins, T.; Olson, J.; Kim, S. C.; Han, S. S.; Bhat, V.; Oh, K. H.; Buttry, D. A. et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nat. Commun. 2015, 6, 6230.

[214]

Song, J. W.; Nguyen, C. C.; Song, S. W. Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries. RSC Adv. 2012, 2, 2003–2009.

[215]

Guo, S. T.; Li, H.; Li, Y. Q.; Han, Y.; Chen, K. B.; Xu, G. Z.; Zhu, Y. J.; Hu, X. L. SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1800434.

[216]

Bie, Y. T.; Yang, J.; Liu, X. L.; Wang, J. L.; Nuli, Y.; Lu, W. Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2899–2904.

[217]

Miranda, A.; Li, X. Y.; Haregewoin, A. M.; Sarang, K.; Lutkenhaus, J.; Kostecki, R.; Verduzco, R. A comprehensive study of hydrolyzed polyacrylamide as a binder for silicon anodes. ACS Appl. Mater. Interfaces 2019, 11, 44090–44100.

[218]

He, J. R.; Zhang, L. Z. Polyvinyl alcohol grafted poly(acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. J. Alloys Compd. 2018, 763, 228–240.

[219]

Jung, C. H.; Kim, K. H.; Hong, S. H. Stable silicon anode for lithium-ion batteries through covalent bond formation with a binder via esterification. ACS Appl. Mater. Interfaces 2019, 11, 26753–26763.

[220]

Parikh, P.; Sina, M.; Banerjee, A.; Wang, X. F.; D’Souza, M. S.; Doux, J. M.; Wu, E. A.; Trieu, O. Y.; Gong, Y. B.; Zhou, Q. et al. Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes. Chem. Mater. 2019, 31, 2535–2544.

[221]

Yao, D. H.; Yang, Y.; Deng, Y. H.; Wang, C. Y. Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. J. Power Sources 2018, 379, 26–32.

[222]

Yao, D. H.; Feng, J. W.; Wang, J.; Deng, Y. H.; Wang, C. Y. Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance. J. Power Sources 2020, 463, 228188.

[223]

Rajeev, K. K.; Kim, E.; Nam, J.; Lee, S.; Mun, J.; Kim, T. H. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries. Electrochim. Acta 2020, 333, 135532.

[224]

Kim, E.; K, K. R.; Nam, J.; Mun, J.; Kim, T. H. Chitosan-grafted-poly(aniline-co-anthranilic acid) as a water soluble binder to form 3D structures for Si anodes. RSC Adv. 2020, 10, 7643–7653.

[225]

Kuo, T. C.; Chiou, C. Y.; Li, C. C.; Lee, J. T. In situ cross-linked poly(ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries. Electrochim. Acta 2019, 327, 135011.

[226]

Liu, X. J.; Zai, J. T.; Iqbal, A.; Chen, M.; Ali, N.; Qi, R. R.; Qian, X. F. Glycerol-crosslinked PEDOT: PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity. J. Colloid Interface Sci. 2020, 565, 270–277.

[227]

Liu, X. J.; Iqbal, A.; Ali, N.; Qi, R. R.; Qian, X. F. Ion-cross-linking-promoted high-performance Si/PEDOT: PSS electrodes: The importance of cations’ ionic potential and softness parameters. ACS Appl. Mater. Interfaces 2020, 12, 19431–19438.

[228]

Liu, D.; Zhao, Y.; Tan, R.; Tian, L. L.; Liu, Y. D.; Chen, H. B.; Pan, F. Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 2017, 36, 206–212.

[229]

Zhang, J. H.; Wang, N.; Zhang, W.; Fang, S.; Yu, Z. L.; Shi, B. M.; Yang, J. Y. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. J. Colloid Interface Sci. 2020, 578, 452–460.

[230]

Zhao, H.; Wei, Y.; Qiao, R. M.; Zhu, C. H.; Zheng, Z. Y.; Ling, M.; Jia, Z.; Bai, Y.; Fu, Y. B.; Lei, J. L. et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application. Nano Lett. 2015, 15, 7927–7932.

[231]

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

[232]

Dufficy, M. K.; Khan, S. A.; Fedkiw, P. S. Galactomannan binding agents for silicon anodes in Li-ion batteries. J. Mater. Chem. A 2015, 3, 12023–12030.

[233]

Lee, D.; Park, H.; Goliaszewski, A.; Byeun, Y. K.; Song, T.; Paik, U. In situ cross-linked carboxymethyl cellulose-polyethylene glycol binder for improving the long-term cycle life of silicon anodes in Li ion batteries. Ind. Eng. Chem. Res. 2019, 58, 8123–8130.

[234]

Ryu, J.; Kim, S.; Kim, J.; Park, S.; Lee, S.; Yoo, S.; Kim, J.; Choi, N. S.; Ryu, J. H.; Park, S. Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes. Adv. Funct. Mater. 2020, 30, 1908433.

[235]

Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T. H. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes. J. Power Sources 2017, 360, 585–592.

[236]

Yuca, N.; Cetintasoglu, M. E.; Dogdu, M. F.; Akbulut, H.; Tabanli, S.; Colak, U.; Taskin, O. S. Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries. Int. J. Energy Res. 2018, 42, 1148–1157.

[237]

Zhao, H.; Wei, Y.; Wang, C.; Qiao, R. M.; Yang, W. L.; Messersmith, P. B.; Liu, G. Mussel-inspired conductive polymer binder for Si-alloy anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 5440–5446.

[238]

Wang, L.; Liu, T. F.; Peng, X.; Zeng, W. W.; Jin, Z. Z.; Tian, W. F.; Gao, B.; Zhou, Y. H.; Chu, P. K.; Huo, K. F. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1704858.

[239]

Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.

[240]

Huang, Q. Q.; Song, J. X.; Gao, Y.; Wang, D. W.; Liu, S.; Peng, S. F.; Usher, C.; Goliaszewski, A.; Wang, D. H. Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nat. Commun. 2019, 10, 5586.

[241]

Cervera, R. B.; Suzuki, N.; Ohnishi, T.; Osada, M.; Mitsuishi, K.; Kambara, T.; Takada, K. High performance silicon-based anodes in solid-state lithium batteries. Energy Environ. Sci. 2014, 7, 662–666.

[242]

Pan, J.; Peng, H. L.; Yan, Y. H.; Bai, Y. Z.; Yang, J.; Wang, N. N.; Dou, S. X.; Huang, F. Q. Solid-state batteries designed with high ion conductive composite polymer electrolyte and silicon anode. Energy Storage Mater. 2021, 43, 165–171.

[243]

Pandey, G. P.; Klankowski, S. A.; Li, Y. H.; Sun, X. S.; Wu, J.; Rojeski, R. A.; Li, J. Effective infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers as anodes for solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 20909–20918.

[244]

Poetke, S.; Hippauf, F.; Baasner, A.; Dörfler, S.; Althues, H.; Kaskel, S. Nanostructured Si-C composites as high-capacity anode material for all-solid-state lithium-ion batteries. Batter. Supercaps 2021, 4, 1323–1334.

[245]

Okuno, R.; Yamamoto, M.; Kato, A.; Takahashi, M. Microscopic observation of nanoporous Si-Li3PS4 interface in composite anodes with stable cyclability. Electrochem. Commun. 2021, 130, 107100.

[246]

Kim, J.; Kim, C.; Jang, I.; Park, J.; Kim, J.; Paik, U.; Song, T. Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries. J. Power Sources 2021, 510, 230425.

[247]

Meng, X. Y.; Liu, Y. Z.; Wang, Z. Z.; Zhang, Y. Z.; Wang, X. Y.; Qiu, J. S. A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li2S in gel electrolyte. Energy Environ. Sci. 2021, 14, 2278–2290.

[248]

Shi, J. W.; Gao, H. Y.; Hu, G. X.; Zhang, Q. Interfacial self-assembled Si@SiOx@C microclusters with high tap density for high-performance Li-ion batteries. Mater. Today Energy 2022, 29, 101090.

[249]

Ge, M. Z.; Cao, C. Y.; Biesold, G. M.; Sewell, C. D.; Hao, S. M.; Huang, J. Y.; Zhang, W.; Lai, Y. K.; Lin, Z. Q. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv. Mater. 2021, 33, e2004577.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 July 2022
Revised: 23 September 2022
Accepted: 06 October 2022
Published: 21 November 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52122209, 52111530050, and 51772147), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX22_0433), and the Research Foundation of State Key Lab (Nos. ZK201906 and ZK201805).

Return