Journal Home > Volume 16 , Issue 4

Optical imaging possesses important implications for early disease diagnosis, timely disease treatment, and basic medical as well as biological research. Compared with the traditionary near-infrared (NIR-I) window (650–950 nm) optical imaging, the emerging second near-infrared (NIR-II) window optical imaging technology owns the great superiorities of non-invasiveness, non-ionizing radiation, and real-time dynamic imaging with the low biological interference, can significantly improve the tissue penetration depth and detection sensitivity, thus expecting to achieve accurate and precise diagnosis of major diseases. Inspired by the conspicuous superiorities, an increasing number of versatile NIR-II fluorophores have been legitimately designed and engineered for precisely deep-tissue mapping-mediated theranostics of life-threatening diseases. Organic semiconducting nanomaterials (OSNs) are derived from organic conjugated molecules with π-electron delocalized skeletons, which show greatly preponderant prospects in the biomedicine field due to the excellent photoelectric property, tunable energy bands, and fine biocompatibility. In this review, the superiorities of NIR-II fluorescence imaging using OSNs for brilliant visualization various of diseases, including tongue cancer, ovarian cancer, osteosarcoma, bacteria or pathogens infection, kidney dysfunction, rheumatoid arthritis, liver injury, and cerebrovascular function, are emphatically summarized. Finally, the reasonable prospects and persistent efforts for repurposing OSNs to facilitate the clinical translation of NIR-II fluorescence phototheranostics are outlined.


menu
Abstract
Full text
Outline
About this article

Repurposing organic semiconducting nanomaterials to accelerate clinical translation of NIR-II fluorescence imaging

Show Author's information Xiaoming Hu1,2Fengwei Sun1Caijun Zhu2Zhen Yang1( )Wei Huang1,3( )
Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Optical imaging possesses important implications for early disease diagnosis, timely disease treatment, and basic medical as well as biological research. Compared with the traditionary near-infrared (NIR-I) window (650–950 nm) optical imaging, the emerging second near-infrared (NIR-II) window optical imaging technology owns the great superiorities of non-invasiveness, non-ionizing radiation, and real-time dynamic imaging with the low biological interference, can significantly improve the tissue penetration depth and detection sensitivity, thus expecting to achieve accurate and precise diagnosis of major diseases. Inspired by the conspicuous superiorities, an increasing number of versatile NIR-II fluorophores have been legitimately designed and engineered for precisely deep-tissue mapping-mediated theranostics of life-threatening diseases. Organic semiconducting nanomaterials (OSNs) are derived from organic conjugated molecules with π-electron delocalized skeletons, which show greatly preponderant prospects in the biomedicine field due to the excellent photoelectric property, tunable energy bands, and fine biocompatibility. In this review, the superiorities of NIR-II fluorescence imaging using OSNs for brilliant visualization various of diseases, including tongue cancer, ovarian cancer, osteosarcoma, bacteria or pathogens infection, kidney dysfunction, rheumatoid arthritis, liver injury, and cerebrovascular function, are emphatically summarized. Finally, the reasonable prospects and persistent efforts for repurposing OSNs to facilitate the clinical translation of NIR-II fluorescence phototheranostics are outlined.

Keywords: malignant tumor, infections, organic semiconducting nanomaterials, second near-infrared (NIR-II) fluorescence imaging, organic injury

References(152)

[1]

Liu, Y. S.; Li, Y.; Koo, S.; Sun, Y.; Liu, Y. X.; Liu, X.; Pan, Y. N.; Zhang, Z. Y.; Du, M. M.; Lu, S. Y. et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: From strategic design toward molecular imaging and theranostics. Chem. Rev. 2022, 122, 209–268.

[2]

Zhang, C.; Yan, K.; Fu, C. K.; Peng, H.; Hawker, C. J.; Whittaker, A. K. Biological utility of fluorinated compounds: From materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 2022, 122, 167–208.

[3]

Zhao, M. Y.; Wang, J. B.; Lei, Z. H.; Lu, L. F.; Wang, S. F.; Zhang, H. X.; Li, B. H.; Zhang, F. NIR-II pH sensor with a FRET adjustable transition point for in situ dynamic tumor microenvironment visualization. Angew. Chem., Int. Ed. 2021, 60, 5091–5095.

[4]

Chen, C.; Tian, R.; Zeng, Y.; Chu, C. C.; Liu, G. Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging: From NIR-I to NIR-II. Bioconjugate Chem. 2020, 31, 276–292.

[5]

Ding, F.; Feng, J.; Zhang, X. L.; Sun, J. L.; Fan, C. H.; Ge, Z. L. Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv. Drug Delivery Rev. 2021, 173, 141–163.

[6]

Xiang, Y. X.; Zheng, G. R.; Liang, Z. T.; Jin, Y. T.; Liu, X. S.; Chen, S. J.; Zhou, K.; Zhu, J. P.; Lin, M.; He, H. J. et al. Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 2020, 15, 883–890.

[7]

Wahsner, J.; Gale, E. M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem. Rev. 2019, 119, 957–1057.

[8]

Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H. L.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 2016, 11, 724–730.

[9]

Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M. W.; Shi, X. Y. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev. 2018, 47, 1874–1900.

[10]

Hu, X. M.; Zhan, C.; Tang, Y. F.; Lu, F.; Li, Y. Y.; Pei, F.; Lu, X. M.; Ji, Y.; Li, J.; Wang, W. J. et al. Intelligent polymer-MnO2 nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. Chem. Commun. 2019, 55, 6006–6009.

[11]

Jin, X.; Yang, W. T.; Xu, Y.; Bian, K. X.; Zhang, B. B. Emerging strategies of activatable MR imaging probes and their advantages for biomedical applications. View 2021, 2, 20200141.

[12]

Saul, E. E.; Guerra, R. B.; Saul, M. E.; Da Silva, L. L.; Aleixo, G. F. P.; Matuda, R. M. K.; Lopes, G. The challenges of implementing low-dose computed tomography for lung cancer screening in low- and middle-income countries. Nat. Cancer 2020, 1, 1140–1152.

[13]

Lee, N.; Choi, S. H.; Hyeon, T. Nano-sized CT contrast agents. Adv. Mater. 2013, 25, 2641–2660.

[14]

Zhou, W.; Chen, Y.; Zhang, Y. T.; Xin, X. Y.; Li, R. T.; Xie, C.; Fan, Q. L. Iodine-rich semiconducting polymer nanoparticles for CT/fluorescence dual-modal imaging-guided enhanced photodynamic therapy. Small 2020, 16, 1905641.

[15]

Chen, Y. Y.; Cheng, L.; Dong, Z. L.; Chao, Y.; Lei, H. L.; Zhao, H.; Wang, J.; Liu, Z. Degradable vanadium disulfide nanostructures with unique optical and magnetic functions for cancer theranostics. Angew. Chem., Int. Ed. 2017, 56, 12991–12996.

[16]

Guo, Z. D.; Gao, M. N.; Song, M. L.; Li, Y. S.; Zhang, D. L.; Xu, D.; You, L. Y.; Wang, L. L.; Zhuang, R. Q.; Su, X. H. et al. Superfluorinated PEI derivative coupled with 99mTc for ASGPR targeted 19F MRI/SPECT/PA tri-modality imaging. Adv. Mater. 2016, 28, 5898–5906.

[17]

Yi, X.; Xu, M. Y.; Zhou, H. L.; Xiong, S. S.; Qian, R.; Chai, Z. F.; Zhao, L.; Yang, K. Ultrasmall hyperbranched semiconducting polymer nanoparticles with different radioisotopes labeling for cancer theranostics. ACS Nano 2018, 12, 9142–9151.

[18]

Zhang, X. L.; Zhao, M.; Wen, L.; Wu, M. R.; Yang, Y.; Zhang, Y. J.; Wu, Y.; Zhong, J.; Shi, H. B.; Zeng, J. F. et al. Sequential SPECT and NIR-II imaging of tumor and sentinel lymph node metastasis for diagnosis and image-guided surgery. Biomater. Sci. 2021, 9, 3069–3075.

[19]

Pisaneschi, F.; Gammon, S. T.; Paolillo, V.; Qureshy, S. A.; Piwnica-Worms, D. Imaging of innate immunity activation in vivo with a redox-tuned PET reporter. Nat. Biotechnol. 2022, 40, 965–973.

[20]

Yang, Z.; Tian, R.; Wu, J. J.; Fan, Q. L.; Yung, B. C.; Niu, G.; Jacobson, O.; Wang, Z. T.; Liu, G.; Yu, G. C. et al. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano 2017, 11, 4247–4255.

[21]

Du, X. S.; Ma, H. D.; Zhang, X. W.; Zhou, M.; Liu, Z. Y.; Wang, H.; Wang, G. L.; Jin, R. C. Single-electron charging and ultrafast dynamics of bimetallic Au144−xAgx(PET)60 nanoclusters. Nano Res. 2022, 15, 8573–8578.

[22]

Scharf, J.; Chouchane, M.; Finegan, D. P.; Lu, B. Y.; Redquest, C.; Kim, M. C.; Yao, W. L.; Franco, A. A.; Gostovic, D.; Liu, Z. et al. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 2022, 17, 446–459.

[23]

Jiang, Y. Y.; Pu, K. Y. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 2021, 121, 13086–13131.

[24]

Feng, Z.; Tang, T.; Wu, T. X.; Yu, X. M.; Zhang, Y. H.; Wang, M.; Zheng, J. Y.; Ying, Y. Y.; Chen, S. Y.; Zhou, J. et al. Perfecting and extending the near-infrared imaging window. Light: Sci. Appl. 2021, 10, 197.

[25]

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

[26]

Pei, P.; Chen, Y.; Sun, C. X.; Fan, Y.; Yang, Y. M.; Liu, X.; Lu, L. F.; Zhao, M. Y.; Zhang, H. X.; Zhao, D. Y. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018.

[27]

Mu, J.; Xiao, M.; Shi, Y.; Geng, X. W.; Li, H.; Yin, Y. X.; Chen, X. Y. The chemistry of organic contrast agents in the NIR-II window. Angew. Chem., Int. Ed. 2022, 61, e202114722.

[28]

Yang, Z.; Li, L.; Jin, A. J.; Huang, W.; Chen, X. Y. Rational design of semiconducting polymer brushes as cancer theranostics. Mater. Horiz. 2020, 7, 1474–1494.

[29]

Hu, X. M.; Lu, F.; Chen, L.; Tang, Y. F.; Hu, W. B.; Lu, X. M.; Ji, Y.; Yang, Z.; Zhang, W. S.; Yin, C. et al. Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T1-weighted magnetic resonance imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 30458–30469.

[30]

Bashkatov, A. N.; Genina, E. A.; Kochubey, V. I.; Tuchin, V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys. 2005, 38, 2543–2555.

[31]

Li, L.; Wang, L. V. Recent advances in photoacoustic tomography. BME Front. 2021, 2021, 9823268.

[32]

Chang, B. S.; Li, D. F.; Ren, Y.; Qu, C. C.; Shi, X. J.; Liu, R. Q.; Liu, H. G.; Tian, J.; Hu, Z. H.; Sun, T. L. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng. 2022, 6, 629–639.

[33]

Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.

[34]

Li, K.; Duan, X. C.; Jiang, Z. Y.; Ding, D.; Chen, Y. C.; Zhang, G. Q.; Liu, Z. P. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat. Commun. 2021, 12, 2376.

[35]

Liu, D. K.; He, Z. X.; Zhao, Y. Y.; Yang, Y. T.; Shi, W.; Li, X. H.; Ma, H. M. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 2021, 143, 17136–17143.

[36]

Liu, S. J.; Li, Y. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 2021, 12, 3427–3436.

[37]

Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.

[38]
Hu, X. M.; Chen, Z. J.; Ao, H. Y.; Fan, Q. L.; Yang, Z.; Huang, W. Rational molecular engineering of organic semiconducting nanoplatforms for advancing NIR-II fluorescence theranostics. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202201067.
[39]

Luo, X. P.; Hu, D. H.; Gao, D. Y.; Wang, Y. N.; Chen, X. H.; Liu, X.; Zheng, H. R.; Sun, M. J.; Sheng, Z. H. Metabolizable near-infrared-II nanoprobes for dynamic imaging of deep-seated tumor-associated macrophages in pancreatic cancer. ACS Nano 2021, 15, 10010–10024.

[40]

Min, X. H.; Zhang, J.; Li, R. H.; Xia, F. F.; Cheng, S. Q.; Li, M.; Zhu, W. W.; Zhou, W.; Li, F.; Sun, Y. Encapsulation of NIR-II AIEgens in virus-like particles for bioimaging. ACS Appl. Mater. Interfaces 2021, 13, 17372–17379.

[41]

Hu, X. M.; Chen, Z. J.; Jin, A. J.; Yang, Z.; Gan, D. Q.; Wu, A. F.; Ao, H. Y.; Huang, W.; Fan, Q. L. Rational design of all-organic nanoplatform for highly efficient MR/NIR-II imaging-guided cancer phototheranostics. Small 2021, 17, 2007566.

[42]

Wang, Z. H.; She, M. Y.; Chen, J.; Cheng, Z. Q.; Li, J. L. Rational modulation strategies to improve bioimaging applications for organic NIR-II fluorophores. Adv. Opt. Mater. 2022, 10, 2101634.

[43]

Xu, Z. R.; Jiang, Y. H.; Fan, M. Z.; Tang, S.; Liu, M. X.; Law, W. C.; Yang, C. B.; Ying, M.; Ma, M. Z.; Dong, B. Q. et al. Aggregation-induced emission nanoprobes working in the NIR-II region: From material design to fluorescence imaging and phototherapy. Adv. Opt. Mater. 2021, 9, 2100859.

[44]

Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818–9821.

[45]

Li, Y. Y.; Zhang, P. S.; Tang, W.; McHugh, K. J.; Kershaw, S. V.; Jiao, M. X.; Huang, X. D.; Kalytchuk, S.; Perkinson, C. F.; Yue, S. S. et al. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 2022, 16, 8076–8094.

[46]

Qu, S. H.; Jia, Q.; Li, Z.; Wang, Z. L.; Shang, L. Chiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Sci. Bull. 2022, 67, 1274–1283.

[47]

Wang, F. F.; Ren, F. Q.; Ma, Z. R.; Qu, L. Q.; Gourgues, R.; Xu, C.; Baghdasaryan, A.; Li, J. C.; Zadeh, I. E.; Los, J. W. N. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 2022, 17, 653–660.

[48]

Liang, C.; Diao, S.; Wang, C.; Gong, H.; Liu, T.; Hong, G. S.; Shi, X. Z.; Dai, H. J.; Liu, Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 2014, 26, 5646–5652.

[49]

Mandal, A. K.; Wu, X. J.; Ferreira, J. S.; Kim, M.; Powell, L. R.; Kwon, H.; Groc, L.; Wang, Y. H.; Cognet, L. Fluorescent sp3 defect-tailored carbon nanotubes enable NIR-II single particle imaging in live brain slices at ultra-low excitation doses. Sci. Rep. 2020, 10, 5286.

[50]

Zheng, Z. L.; Jia, Z.; Qin, Y. F.; Dai, R.; Chen, X. J.; Ma, Y. C.; Xie, X. M.; Zhang, R. P. All-in-one zeolite-carbon-based nanotheranostics with adjustable NIR-II window photoacoustic/fluorescence imaging performance for precise NIR-II photothermal-synergized catalytic antitumor therapy. Small 2021, 17, 2103252.

[51]

Wang, W. L.; Kong, Y. F.; Jiang, J.; Xie, Q. Q.; Huang, Y.; Li, G. N.; Wu, D.; Zheng, H. Z.; Gao, M.; Xu, S. J. et al. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging. Angew. Chem., Int. Ed. 2020, 59, 22431–22435.

[52]

Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

[53]

Li, D. L.; Liu, Q.; Qi, Q. R.; Shi, H.; Hsu, E. C.; Chen, W. Y.; Yuan, W. L.; Wu, Y. F.; Lin, S. E.; Zeng, Y. T. et al. Gold nanoclusters for NIR-II fluorescence imaging of bones. Small 2020, 16, 2003851.

[54]

He, S. Q.; Chen, S.; Li, D. F.; Wu, Y. F.; Zhang, X.; Liu, J. F.; Song, J.; Liu, L. W.; Qu, J. L.; Cheng, Z. High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging. Nano Lett. 2019, 19, 2985–2992.

[55]

Lv, Z. J.; Jin, L. H.; Cao, Y.; Zhang, H.; Xue, D. Z.; Yin, N.; Zhang, T. Q.; Wang, Y. H.; Liu, J. H.; Liu, X. G. et al. A nanotheranostic agent based on Nd3+-doped YVO4 with blood–brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma. Light:Sci. Appl. 2022, 11, 116.

[56]

Yang, J. Y.; He, S. Q.; Hu, Z. H.; Zhang, Z. Y.; Cao, C. G.; Cheng, Z.; Fang, C. H.; Tian, J. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today 2021, 38, 101120.

[57]

Zhang, X.; He, S. Q.; Ding, B. B.; Qu, C. R.; Zhang, Q.; Chen, H.; Sun, Y.; Fang, H. Y.; Long, Y.; Zhang, R. P. et al. Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chem. Eng. J. 2020, 385, 123959.

[58]
Yang, Z. B.; Chen, H. R. The recent progress of inorganic-based intelligent responsive nanoplatform for tumor theranostics. View, in press, https://doi.org/10.1002/VIW.20220009.
[59]

Li, J. C.; Pu, K. Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 2019, 48, 38–71.

[60]

Miao, Q. Q.; Pu, K. Y. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 2018, 30, 1801778.

[61]

Hu, X. M.; Tang, Y. F.; Hu, Y. X.; Lu, F.; Lu, X. M.; Wang, Y. Q.; Li, J.; Li, Y. Y.; Ji, Y.; Wang, W. J. et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 2019, 9, 4168–4181.

[62]

Zeng, Z. L.; Zhang, C.; He, S. S.; Li, J. C.; Pu, K. Y. Activatable cancer sono-immunotherapy using semiconducting polymer nanobodies. Adv. Mater. 2022, 34, 2203246.

[63]

Li, J. C.; Huang, J. G.; Lyu, Y.; Huang, J. S.; Jiang, Y. Y.; Xie, C.; Pu, K. Y. Photoactivatable organic semiconducting pro-nanoenzymes. J. Am. Chem. Soc. 2019, 141, 4073–4079.

[64]

Shuhendler, A. J.; Pu, K. Y.; Cui, L. N.; Uetrecht, J. P.; Rao, J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 2014, 32, 373–380.

[65]

Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849.

[66]

He, S. S.; Jiang, Y. Y.; Li, J. C.; Pu, K. Y. Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer. Angew. Chem., Int. Ed. 2020, 59, 10633–10638.

[67]

Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z. N.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.

[68]

Li, J. C.; Pu, K. Y. Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Acc. Chem. Res. 2020, 53, 752–762.

[69]

Ouspenskaia, T.; Law, T.; Clauser, K. R.; Klaeger, S.; Sarkizova, S.; Aguet, F.; Li, B.; Christian, E.; Knisbacher, B. A.; Le, P. M. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 2022, 40, 209–217.

[70]

Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C. R.; Keppler, B. K.; Berger, W. Metal drugs and the anticancer immune response. Chem. Rev. 2019, 119, 1519–1624.

[71]

Walsh, S. J.; Bargh, J. D.; Dannheim, F. M.; Hanby, A. R.; Seki, H.; Counsell, A. J.; Ou, X. X.; Fowler, E.; Ashman, N.; Takada, Y. et al. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 2021, 50, 1305–1353.

[72]

Cao, Z.; Pan, X.; Yu, H. Y.; Hua, S. Y.; Wang, D.; Chen, D. Z.; Zhou, M.; Wu, J. A deep learning approach for detecting colorectal cancer via Raman spectra. BME Front. 2022, 2022, 9872028.

[73]

Asensio, N. C.; Giner, E. M.; De Groot, N. S.; Burgas, M. T. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection. Nat. Commun. 2017, 8, 14092.

[74]

Han, D. L.; Liu, X. M.; Wu, S. L. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem. Soc. Rev. 2022, 51, 7138–7169.

[75]

Pirzada, M.; Altintas, Z. Nanomaterials for virus sensing and tracking. Chem. Soc. Rev. 2022, 51, 5805–5841.

[76]

Cheng, P. H.; Chen, W.; Li, S. H.; He, S. S.; Miao, Q. Q.; Pu, K. Y. Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. Adv. Mater. 2020, 32, 1908530.

[77]

Cheng, P. H.; Miao, Q. Q.; Huang, J. G.; Li, J. C.; Pu, K. Y. Multiplex optical urinalysis for early detection of drug-induced kidney injury. Anal. Chem. 2020, 92, 6166–6172.

[78]

Huang, J. S.; Huang, J. G.; Cheng, P. H.; Jiang, Y. Y.; Pu, K. Y. Near-infrared chemiluminescent reporters for in vivo imaging of reactive oxygen and nitrogen species in kidneys. Adv. Funct. Mater. 2020, 30, 2003628.

[79]

Chen, F. F.; Teng, L. L.; Lu, C.; Zhang, C.; Rong, Q. M.; Zhao, Y.; Yang, Y.; Wang, Y. J.; Song, G. S.; Zhang, X. B. Activatable magnetic/photoacoustic nanoplatform for redox-unlocked deep-tissue molecular imaging in vivo via prussian blue nanoprobe. Anal. Chem. 2020, 92, 13452–13461.

[80]

He, W. X.; Mei, Q. Y.; Li, J.; Zhai, Y. T.; Chen, Y. T.; Wang, R.; Lu, E. H.; Zhang, X. Y.; Zhang, Z. W.; Sha, X. Y. Preferential targeting cerebral ischemic lesions with cancer cell-inspired nanovehicle for ischemic stroke treatment. Nano Lett. 2021, 21, 3033–3043.

[81]

Megia-Fernandez, A.; Marshall, A.; Akram, A. R.; Mills, B.; Chankeshwara, S. V.; Scholefield, E.; Miele, A.; McGorum, B. C.; Michaels, C.; Knighton, N. et al. Optical detection of distal lung enzyme activity in human inflammatory lung disease. BME Front. 2021, 2021, 9834163.

[82]

Cheng, P. H.; Pu, K. Y. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat. Rev. Mater. 2021, 6, 1095–1113.

[83]

Chen, J. Q.; Qi, J.; Chen, C.; Chen, J. H.; Liu, L. J.; Gao, R. K.; Zhang, T. T.; Song, L.; Ding, D.; Zhang, P. et al. Tocilizumab-conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis. Adv. Mater. 2020, 32, 2003399.

[84]

Fan, X. X.; Xu, M. Z.; Leung, E. L. H.; Jun, C.; Yuan, Z.; Liu, L. ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria. Nano-Micro Lett. 2020, 12, 76.

[85]

Geng, W. B.; Chen, M. W.; Tao, B. L.; Wang, R.; Wang, D.; Li, K.; Lin, C. C.; Liu, X. Z.; Gao, P. F.; Luo, Z. et al. Cell-free DNA depletion via cell-penetrating poly(disulfide)s for rheumatoid arthritis therapy. Appl. Mater. Today 2022, 26, 101351.

[86]

Choi, H. S.; Kim, H. K. Multispectral image-guided surgery in patients. Nat. Biomed. Eng. 2020, 4, 245–246.

[87]

Hu, Z. H.; Fang, C.; Li, B.; Zhang, Z. Y.; Cao, C. G.; Cai, M. S.; Su, S.; Sun, X. W.; Shi, X. J.; Li, C. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020, 4, 259–271.

[88]

Kim, T.; O’Brien, C.; Choi, H. S.; Jeong, M. Y. Fluorescence molecular imaging systems for intraoperative image-guided surgery. Appl. Spectrosc. Rev. 2018, 53, 349–359.

[89]

Makvandi, P.; Josic, U.; Delfi, M.; Pinelli, F.; Jahed, V.; Kaya, E.; Ashrafizadeh, M.; Zarepour, A.; Rossi, F.; Zarrabi, A. et al. Drug delivery (nano)platforms for oral and dental applications: Tissue regeneration, infection control, and cancer management. Adv. Sci. 2021, 8, 2004014.

[90]

El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface Plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834.

[91]

Tan, G. Z.; Zhong, Y. T.; Yang, L. L.; Jiang, Y. D.; Liu, J. Q.; Ren, F. A multifunctional MOF-based nanohybrid as injectable implant platform for drug synergistic oral cancer therapy. Chem. Eng. J. 2020, 390, 124446.

[92]

Yin, B. L.; Qin, Q. Q.; Li, Z.; Wang, Y. J.; Liu, X. L.; Liu, Y. C.; Huan, S. Y.; Zhang, X. B.; Song, G. S. Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment. Nano Today 2022, 45, 101550.

[93]

Ling, M. J.; Sun, R.; Li, G.; Syeda, M. Z.; Ma, W.; Mai, Z. Y.; Shao, L. Q.; Tang, L. G.; Yu, Z. Q. NIR-II emissive dye based polymer nanoparticle targeting EGFR for oral cancer theranostics. Nano Res. 2022, 15, 6288–6296.

[94]

Wei, Z.; Zhang, H.; Zou, H.; Song, C.; Zhao, S.; Cao, Z.; Zhang, X.; Zhang, G.; Cai, Y.; Han, W. A novel second near-infrared theranostic agent: A win–win strategy of tracing and blocking tumor-associated vessels for oral squamous cell carcinoma. Mater. Today Nano 2022, 17, 100172.

[95]

Färkkilä, A.; Gulhan, D. C.; Casado, J.; Jacobson, C. A.; Nguyen, H.; Kochupurakkal, B.; Maliga, Z.; Yapp, C.; Chen, Y. A.; Schapiro, D. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 2020, 11, 1459.

[96]

Izar, B.; Tirosh, I.; Stover, E. H.; Wakiro, I.; Cuoco, M. S.; Alter, I.; Rodman, C.; Leeson, R.; Su, M. J.; Shah, P. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 2020, 26, 1271–1279.

[97]

Menon, U.; Gentry-Maharaj, A.; Burnell, M.; Singh, N.; Ryan, A.; Karpinskyj, C.; Carlino, G.; Taylor, J.; Massingham, S. K.; Raikou, M. et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK collaborative trial of ovarian cancer screening (UKCTOCS): A randomised controlled trial. Lancet 2021, 397, 2182–2193.

[98]

Jiménez-Sánchez, A.; Cybulska, P.; Mager, K. L.; Koplev, S.; Cast, O.; Couturier, D. L.; Memon, D.; Selenica, P.; Nikolovski, I.; Mazaheri, Y. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet. 2020, 52, 582–593.

[99]

Kim, H.; Xu, H. N.; George, E.; Hallberg, D.; Kumar, S.; Jagannathan, V.; Medvedev, S.; Kinose, Y.; Devins, K.; Verma, P. et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 2020, 11, 3726.

[100]

Wang, P. Y.; Fan, Y.; Lu, L. F.; Liu, L.; Fan, L. L.; Zhao, M. Y.; Xie, Y.; Xu, C. J.; Zhang, F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 2018, 9, 2898.

[101]

Zhou, X. B.; Liu, Q. Y.; Yuan, W.; Li, Z. H.; Xu, Y. L.; Feng, W.; Xu, C. J.; Li, F. Y. Ultrabright NIR-II emissive polymer dots for metastatic ovarian cancer detection. Adv. Sci. 2021, 8, 2000441.

[102]

Lu, S. Y.; Xue, L. R.; Yang, M.; Wang, J. J.; Li, Y.; Jiang, Y. X.; Hong, X. C.; Wu, M. F.; Xiao, Y. L. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Res. 2022, 15, 9183–9191.

[103]

Zhou, H.; Yi, W. R.; Li, A. G.; Wang, B.; Ding, Q. H.; Xue, L. R.; Zeng, X. D.; Feng, Y. Z.; Li, Q. Q.; Wang, T. et al. Specific small-molecule NIR-II fluorescence imaging of osteosarcoma and lung metastasis. Adv. Healthc. Mater. 2020, 9, 1901224.

[104]

Li, D. F.; Zhang, C.; Tai, X. Y.; Xu, D. H.; Xu, J. Z.; Sun, P. F.; Fan, Q. L.; Cheng, Z.; Zhang, Y. 1064 nm activatable semiconducting polymer-based nanoplatform for NIR-II fluorescence/NIR-II photoacoustic imaging guided photothermal therapy of orthotopic osteosarcoma. Chem. Eng. J. 2022, 445, 136836.

[105]

Zheng, R. L.; Shi, Y. M.; Jia, Z. J.; Zhao, C. Y.; Zhang, Q.; Tan, X. R. Fast repair of DNA radicals. Chem. Soc. Rev. 2010, 39, 2827–2834.

[106]

Liao, N. S.; Su, L. C.; Zheng, Y. S.; Zhao, B. X.; Wu, M.; Zhang, D.; Yang, H. H.; Liu, X. L.; Song, J. B. In vivo tracking of cell viability for adoptive natural killer cell-based immunotherapy by ratiometric NIR-II fluorescence imaging. Angew. Chem., Int. Ed. 2021, 60, 20888–20896.

[107]

Jin, T. X.; Cheng, D.; Jiang, G. Y.; Xing, W. Q.; Liu, P. W.; Wang, B.; Zhu, W. P.; Sun, H. T.; Sun, Z. R.; Xu, Y. F. et al. Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioact. Mater. 2022, 14, 42–51.

[108]

Li, Z. L.; Lai, X. Q.; Fu, S. Q.; Ren, L.; Cai, H.; Zhang, H.; Gu, Z. W.; Ma, X. L.; Luo, K. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv. Sci. 2022, 9, 2201734.

[109]

Ni, K. Y.; Aung, T.; Li, S. Y.; Fatuzzo, N.; Liang, X. J.; Lin, W. B. Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 2019, 5, 1892–1913.

[110]

Shao, Y. L.; Liu, B.; Di, Z. H.; Zhang, G.; Sun, L. D.; Li, L. L.; Yan, C. H. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939–3946.

[111]

Wu, D.; Fan, Y. Y.; Yan, H. H.; Li, D. D.; Zhao, Z.; Chen, X. Q.; Yang, X. Z.; Liu, X. K. Oxidation-sensitive polymeric nanocarrier-mediated cascade PDT chemotherapy for synergistic cancer therapy and potentiated checkpoint blockade immunotherapy. Chem. Eng. J. 2021, 404, 126481.

[112]

Cheng, X. D.; Zhang, C.; Shen, K.; Liu, H. F.; Bai, C. H.; Ding, Q. H.; Guan, M. T.; Wu, J. Z.; Tian, Z. Q.; Chen, D. L. et al. Novel diketopyrrolopyrrole NIR-II fluorophores and DDR inhibitors for in vivo chemo-photodynamic therapy of osteosarcoma. Chem. Eng. J. 2022, 446, 136929.

[113]

Zipperer, A.; Konnerth, M. C.; Laux, C.; Berscheid, A.; Janek, D.; Weidenmaier, C.; Burian, M.; Schilling, N. A.; Slavetinsky, C.; Marschal, M. et al. Correction: Corrigendum: Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016, 539, 314.

[114]

Huang, Y.; Li, D.; Wang, D. L.; Chen, X. H.; Ferreira, L.; Martins, M. C. L.; Wang, Y. X.; Jin, Q.; Wang, D.; Tang, B. Z. et al. A NIR-II emissive polymer AIEgen for imaging-guided photothermal elimination of bacterial infection. Biomaterials 2022, 286, 121579.

[115]

Xu, Y. L.; Zhang, Y.; Li, J.; An, J.; Li, C. L.; Bai, S. Y.; Sharma, A.; Deng, G. Z.; Kim, J. S.; Sun, Y. NIR-II emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens. Biomaterials 2020, 259, 120315.

[116]

Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Y. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.

[117]

Huang, J. G.; Lyu, Y.; Li, J. C.; Cheng, P. H.; Jiang, Y. Y.; Pu, K. Y. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury. Angew. Chem., Int. Ed. 2019, 58, 17796–17804.

[118]

Huang, J. G.; Pu, K. Y. Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chem. Sci. 2021, 12, 3379–3392.

[119]

Chen, Y.; Pei, P.; Lei, Z. H.; Zhang, X.; Yin, D. R.; Zhang, F. A promising NIR-II fluorescent sensor for peptide-mediated long-term monitoring of kidney dysfunction. Angew. Chem., Int. Ed. 2021, 60, 15809–15815.

[120]

Huang, J. G.; Xie, C.; Zhang, X. D.; Jiang, Y. Y.; Li, J. C.; Fan, Q. L.; Pu, K. Y. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction. Angew. Chem., Int. Ed. 2019, 58, 15120–15127.

[121]

Tan, J. H.; Yin, K.; Ouyang, Z. R.; Wang, R. C.; Pan, H. M.; Wang, Z. J.; Zhao, C. C.; Guo, W.; Gu, X. F. Real-time monitoring renal impairment due to drug-induced AKI and diabetes-caused CKD using an NAG-activatable NIR-II nanoprobe. Anal. Chem. 2021, 93, 16158–16165.

[122]

Yi, W. R.; Zhou, H.; Li, A. G.; Yuan, Y.; Guo, Y. Q.; Li, P. C.; Qi, B. W.; Xiao, Y. L.; Yu, A. X.; Hu, X. A NIR-II fluorescent probe for articular cartilage degeneration imaging and osteoarthritis detection. Biomater. Sci. 2019, 7, 1043–1051.

[123]

Li, J.; Chen, L.; Xu, X. Y.; Fan, Y.; Xue, X.; Shen, M. W.; Shi, X. Y. Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform. Small 2020, 16, 2005661.

[124]

Li, L. Y.; Wang, X. L.; Gao, R. Y.; Zhang, B.; Liu, Y. X.; Zhou, J.; Fu, L. M.; Wang, J. Inflammation-triggered supramolecular nanoplatform for local dynamic dependent imaging-guided therapy of rheumatoid arthritis. Adv. Sci. 2022, 9, 2105188.

[125]

Qiao, H.; Mei, J. T.; Yuan, K.; Zhang, K.; Zhou, F.; Tang, T. T.; Zhao, J. Immune-regulating strategy against rheumatoid arthritis by inducing tolerogenic dendritic cells with modified zinc peroxide nanoparticles. J. Nanobiotechnol. 2022, 20, 323.

[126]

Song, Y. L.; Li, W.; Jing, H. Q.; Liang, X. Y.; Zhou, Y.; Li, N.; Feng, S. Q. Spatiotemporal sonodynamic therapy for the treatment of rheumatoid arthritis based on Z-scheme heterostructure sonosensitizer of HO-1 inhibitor jointed bismuth nanotriangle. Chem. Eng. J. 2022, 438, 135558.

[127]

Fan, X. X.; Xia, Q. M.; Zhang, Y. Y.; Li, Y. R.; Feng, Z.; Zhou, J.; Qi, J.; Tang, B. Z.; Qian, J.; Lin, H. Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD). Adv. Healthc. Mater. 2021, 10, 2101043.

[128]

Wu, P.; Zhu, Y.; Chen, L. L.; Tian, Y.; Xiong, H. A fast-responsive OFF-ON near-infrared-ii fluorescent probe for in vivo detection of hypochlorous acid in rheumatoid arthritis. Anal. Chem. 2021, 93, 13014–13021.

[129]

Yang, Y. L.; Wang, S. F.; Lu, L. F.; Zhang, Q. S.; Yu, P.; Fan, Y.; Zhang, F. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew. Chem., Int. Ed. 2020, 59, 18380–18385.

[130]

Tang, Y. F.; Li, Y. Y.; Lu, X. M.; Hu, X. M.; Zhao, H.; Hu, W. B.; Lu, F.; Fan, Q. L.; Huang, W. Bio-erasable intermolecular donor–acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv. Funct. Mater. 2019, 29, 1807376.

[131]

Meng, L. C.; Wang, Q. L.; Wang, L.; Zhao, Z.; Xin, G. Z.; Zheng, Z. G.; Zhou, P.; Li, P.; Jiang, Y.; Li, H. J. miR122-controlled all-in-one nanoplatform for in situ theranostic of drug-induced liver injury by visualization imaging guided on-demand drug release. Mater. Today Bio 2021, 12, 100157.

[132]

Shi, Y. Y.; Liu, Y.; Wang, S. J.; Huang, J. X.; Luo, Z. Y.; Jiang, M. S.; Lu, Y. C.; Lin, Q.; Liu, H. H.; Cheng, N. T. et al. Endoplasmic reticulum-targeted inhibition of CYP2E1 with vitamin E nanoemulsions alleviates hepatocyte oxidative stress and reverses alcoholic liver disease. Biomaterials 2022, 288, 121720.

[133]

Ullah, A.; Chen, G.; Zhang, Y. B.; Hussain, A.; Shafiq, M.; Raza, F.; Liu, D. J.; Wang, K. K.; Cao, J.; Qi, X. Y. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis. Biomater. Sci. 2022, 10, 2650–2664.

[134]

Tang, Y. F.; Li, Y. Y.; Wang, Z.; Pei, F.; Hu, X. M.; Ji, Y.; Li, X.; Zhao, H.; Hu, W. B.; Lu, X. M. et al. Organic semiconducting nanoprobe with redox-activatable NIR-II fluorescence for in vivo real-time monitoring of drug toxicity. Chem. Commun. 2019, 55, 27–30.

[135]

Sun, L. H.; Ouyang, J.; Ma, Y. Q.; Zeng, Z.; Zeng, C.; Zeng, F.; Wu, S. Z. An activatable probe with aggregation-induced emission for detecting and imaging herbal medicine induced liver injury with optoacoustic imaging and NIR-II fluorescence imaging. Adv. Healthc. Mater. 2021, 10, 2100867.

[136]

Qiu, Q.; Chang, T. H.; Wu, Y. Y.; Qu, C. R.; Chen, H.; Cheng, Z. Liver injury long-term monitoring and fluorescent image-guided tumor surgery using self-assembly amphiphilic donor–acceptor NIR-II dyes. Biosens. Bioelectron. 2022, 212, 114371.

[137]

Liu, J. H.; Zhang, W.; Zhou, C. M.; Li, M. M.; Wang, X.; Zhang, W.; Liu, Z. Z.; Wu, L. L.; James, T. D.; Li, P. et al. Precision navigation of hepatic ischemia-reperfusion injury guided by lysosomal viscosity-activatable NIR-II fluorescence. J. Am. Chem. Soc. 2022, 144, 13586–13599.

[138]

Chen, J. J.; Chen, L. Q.; Wu, Y. L.; Fang, Y. C.; Zeng, F.; Wu, S. Z.; Zhao, Y. L. A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging. Nat. Commun. 2021, 12, 6870.

[139]
Gao, D. Y.; Li, Y. X.; Wu, Y. Y.; Liu, Y.; Hu, D. H.; Liang, S. M.; Liao, J. L.; Pan, M.; Zhang, P. F.; Li, K. et al. Albumin-consolidated AIEgens for boosting glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl. Mater. Interfaces, in press, https://doi.org/10.1021/acsami.1c22700.
[140]

Cheng, Y.; Cheng, A. R.; Jia, Y. L.; Yang, L.; Ning, Y.; Xu, L.; Zhong, Y. Z.; Zhuang, Z. R.; Guan, J. T.; Zhang, X. L. et al. pH-responsive multifunctional theranostic rapamycin-loaded nanoparticles for imaging and treatment of acute ischemic stroke. ACS Appl. Mater. Interfaces 2021, 13, 56909–56922.

[141]
Ai, Y. J.; He, M. Q.; Wan, C. X.; Luo, H.; Xin, H. B.; Wang, Y. T.; Liang, Q. L. Nanoplatform-based reactive oxygen species scavengers for therapy of ischemia-reperfusion injury. Adv. Therap., in press, https://doi.org/10.1002/adtp.202200066.
[142]

Ren, F.; Jiang, Z. L.; Han, M. X.; Zhang, H.; Yun, B. F.; Zhu, H. Q.; Li, Z. NIR-II fluorescence imaging for cerebrovascular diseases. View 2021, 2, 20200128.

[143]

Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872–6879.

[144]

Yu, W. B.; Guo, B.; Zhang, H. Q.; Zhou, J.; Yu, X. M.; Zhu, L.; Xue, D. W.; Liu, W.; Sun, X. H.; Qian, J. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots. Sci. Bull. 2019, 64, 410–416.

[145]

Li, Y. Y.; Fan, X. X.; Li, Y. R.; Liu, S. J.; Chuah, C.; Tang, Y. H.; Kwok, R. T. K.; Lam, J. W. Y.; Lu, X. F.; Qian, J. et al. Molecular crystal engineering of organic chromophores for NIR-II fluorescence quantification of cerebrovascular function. ACS Nano 2022, 16, 3323–3331.

[146]

Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

[147]

Zhu, S. J.; Tian, R.; Antaris, A. L.; Chen, X. Y.; Dai, H. J. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 2019, 31, 1900321.

[148]

Yang, Q. L.; Hu, Z. B.; Zhu, S. J.; Ma, R.; Ma, H. L.; Ma, Z. R.; Wan, H.; Zhu, T.; Jiang, Z. Y.; Liu, W. Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 2018, 140, 1715–1724.

[149]

Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242.

[150]

Zeng, W. W.; Wu, X. X.; Chen, T.; Sun, S. J.; Shi, Z. F.; Liu, J.; Ji, X. Y.; Zeng, X. W.; Guan, J.; Mei, L. et al. Renal-clearable ultrasmall polypyrrole nanoparticles with size-regulated property for second near-infrared light-mediated photothermal therapy. Adv. Funct. Mater. 2021, 31, 2008362.

[151]

Sun, Z. Q.; Huang, H. Y.; Zhang, R.; Yang, X. H.; Yang, H. C.; Li, C. Y.; Zhang, Y. J.; Wang, Q. B. Activatable rare earth near-infrared-II fluorescence ratiometric nanoprobes. Nano Lett. 2021, 21, 6576–6583.

[152]

Zhao, M. Y.; Li, B. H.; Zhang, H. X.; Zhang, F. Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem. Sci. 2021, 12, 3448–3459.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 September 2022
Revised: 29 September 2022
Accepted: 02 October 2022
Published: 05 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangxi Province (Nos. 20212BAB214005 and 20212ACB214002) and the Research startup fund of East China Jiaotong University (No. 465).

Return