Journal Home > Volume 16 , Issue 4

Spatial separation of oxidation/reduction cocatalyst is an effective means to improve the efficiency of charge separation in photocatalytic reaction systems. Herein, a yolk–shell Pd@NH2-UiO-66@Cu2O heterojunction was designed and synthesized by integration of electron collector Pd and hole collector Cu2O inside and outside of a photoactive metal-organic framework (MOF) NH2-UiO-66, respectively. The obtained Pd@NH2-UiO-66@Cu2O heterojunction effectively inhibits the electron and hole recombination through the photo-induced electrons and holes flow inward and outward of the composite, and promotes the reduction and oxidation abilities for the oxidative coupling of benzylamine to imines. Compared with Pd/NH2-UiO-66@Cu2O, Pd@NH2-UiO-66, and Pd/NH2-UiO-66, Pd@NH2-UiO-66@Cu2O exhibits the highest photocatalytic activity. More importantly, Pd@NH2-UiO-66@Cu2O shows a conversion rate of benzylamine up to 99% either by oxidation under aerobic conditions or by strong adsorption of H atom (Hads) under anaerobic conditions. In addition, the catalyst shows good stability and can be recycled at least ten times. This work provides useful guidance on construction of MOFs-based composites with spatially separated photoinduced charge carriers to realize efficient oxidation coupling of benzylamine in both aerobic and anaerobic conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancement of visible-light-driven oxidative amine coupling under aerobic and anaerobic conditions by photocatalyst with spatial separation of photoinduced charge carriers

Show Author's information Shasha Wang1,2Kuan Gao3Yang Cui1Shuwen Li1Heyao Zhang1Bin Zhang1Jie Wu1( )Hongwei Hou1( )Shuangquan Zang1( )
Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Science, Xuchang University, Xuchang 461000, China

Abstract

Spatial separation of oxidation/reduction cocatalyst is an effective means to improve the efficiency of charge separation in photocatalytic reaction systems. Herein, a yolk–shell Pd@NH2-UiO-66@Cu2O heterojunction was designed and synthesized by integration of electron collector Pd and hole collector Cu2O inside and outside of a photoactive metal-organic framework (MOF) NH2-UiO-66, respectively. The obtained Pd@NH2-UiO-66@Cu2O heterojunction effectively inhibits the electron and hole recombination through the photo-induced electrons and holes flow inward and outward of the composite, and promotes the reduction and oxidation abilities for the oxidative coupling of benzylamine to imines. Compared with Pd/NH2-UiO-66@Cu2O, Pd@NH2-UiO-66, and Pd/NH2-UiO-66, Pd@NH2-UiO-66@Cu2O exhibits the highest photocatalytic activity. More importantly, Pd@NH2-UiO-66@Cu2O shows a conversion rate of benzylamine up to 99% either by oxidation under aerobic conditions or by strong adsorption of H atom (Hads) under anaerobic conditions. In addition, the catalyst shows good stability and can be recycled at least ten times. This work provides useful guidance on construction of MOFs-based composites with spatially separated photoinduced charge carriers to realize efficient oxidation coupling of benzylamine in both aerobic and anaerobic conditions.

Keywords: metal-organic frameworks, photocatalysis, cuprous oxide, palladium nanoparticle, oxidative coupling of amines

References(49)

[1]

Vesely, J.; Rios, R. Enantioselective methodologies using N-carbamoyl-imines. Chem. Soc. Rev. 2014, 43, 611–630.

[2]

Zhang, N.; Li, X. Y.; Liu, Y. F.; Long, R.; Li, M. Q.; Chen, S. M.; Qi, Z. M.; Wang, C. M.; Song, L.; Jiang, J. et al. Defective tungsten oxide hydrate nanosheets for boosting aerobic coupling of amines: Synergistic catalysis by oxygen vacancies and brønsted acid sites. Small 2017, 13, 1701354.

[3]

Raza, F.; Park, J. H.; Lee, H. R.; Kim, H. I.; Jeon, S. J.; Kim, J. H. Visible-light-driven oxidative coupling reactions of amines by photoactive WS2 nanosheets. ACS Catal. 2016, 6, 2754–2759.

[4]

Park, J. H.; Raza, F.; Jeon, S. J.; Yim, D.; Kim, H. I.; Kang, T. W.; Kim, J. H. Oxygen-mediated formation of MoSx-doped hollow carbon dots for visible light-driven photocatalysis. J. Mater. Chem. A 2016, 4, 14796–14803.

[5]

Girish, Y. R.; Biswas, R.; De, M. Mixed-phase 2D-MoS2 as an effective photocatalyst for selective aerobic oxidative coupling of amines under visible-light irradiation. Chem.—Eur. J. 2018, 24, 13871–13878.

[6]

Lang, X. J.; Ji, H. W.; Chen, C. C.; Ma, W. H.; Zhao, J. C. Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew. Chem., Int. Ed. 2011, 50, 3934–3937.

[7]

Zhang, J. J.; Ge, J. M.; Wang, H. H.; Wei, X.; Li, X. H.; Chen, J. S. Activating oxygen molecules over carbonyl-modified graphitic carbon nitride: Merging supramolecular oxidation with photocatalysis in a metal-free catalyst for oxidative coupling of amines into imines. ChemCatChem 2016, 8, 3441–3445.

[8]

Kayser, L. V.; Vollmer, M.; Welnhofer, M.; Krikcziokat, H.; Meerholz, K.; Arndtsen, B. A. Metal-free, multicomponent synthesis of pyrrole-based π-conjugated polymers from imines, acid chlorides, and alkynes. J. Am. Chem. Soc. 2016, 138, 10516–10521.

[9]

Xu, W. T.; Pei, X. K.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526.

[10]

Li, X.; Yang, S. X.; Zhang, F. L.; Zheng, L. Y.; Lang, X. J. Facile synthesis of 2D covalent organic frameworks for cooperative photocatalysis with TEMPO: The selective aerobic oxidation of benzyl amines. Appl. Catal. B: Environ. 2022, 303, 120846.

[11]

Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C–N bond formation in one photoredox cycle. Angew. Chem., Int. Ed. 2021, 60, 7962–7970.

[12]

Wang, T.; Tao, X. Q.; Xiao, Y.; Qiu, G. H.; Yang, Y.; Li, B. X. Charge separation and molecule activation promoted by Pd/MIL-125-NH2 hybrid structures for selective oxidation reactions. Catal. Sci. Technol. 2020, 10, 138–146.

[13]

Shen, Q. Y.; Zhou, S.; Yang, F. L.; Wang, X. J.; Han, X. G. Engineering one-dimensional hollow beta-In2S3/In2O3 hexagonal micro-tubes for efficient broadband-light photocatalytic performance. J. Mater. Chem. A 2022, 10, 4974–4980.

[14]

Wang, D. A.; Hisatomi, T.; Takata, T.; Pan, C. S.; Katayama, M.; Kubota, J.; Domen, K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew. Chem., Int. Ed. 2013, 52, 11252–11256.

[15]

Shen, Q. Y.; Xu, T. Y.; Zhuang, G. L.; Zhuang, Y.; Sun, L. M.; Han, X. G.; Wang, X. J.; Zhan, W. W. Spatially separated photoinduced charge carriers for the enhanced photocatalysis over the one-dimensional yolk–shell In2Se3@N-C nanoreactor. ACS Catal. 2021, 11, 12931–12939.

[16]

Xing, M. Y.; Qiu, B. C.; Du, M. M.; Zhu, Q. H.; Wang, L. Z.; Zhang, J. L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1702624.

[17]

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

[18]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

[19]

Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat. Protoc. 2016, 11, 149–162.

[20]

Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem., Int. Ed. 2004, 43, 6296–6301.

[21]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[22]

Zhang, J. J.; Bai, T. Y.; Huang, H.; Yu, M. H.; Fan, X. B.; Chang, Z.; Bu, X. H. Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 2020, 32, 2004747.

[23]

Rimoldi, M.; Howarth, A. J.; DeStefano, M. R.; Lin, L.; Goswami, S.; Li, P.; Hupp, J. T.; Farha, O. K. Catalytic zirconium/hafnium-based metal-organic frameworks. ACS Catal. 2017, 7, 997–1014.

[24]

Jiao, L.; Wang, J. X.; Jiang, H. L. Microenvironment modulation in metal-organic framework-based catalysis. Acc. Mater. Res. 2021, 2, 327–339.

[25]

Ren, J. W.; Lv, S.; Wang, S. Q.; Bao, M. J.; Zhang, X.; Gao, Y.; Liu, Y. Y.; Zhang, Z. G.; Zeng, L. B.; Ke, J. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification. Sep. Purif. Technol. 2021, 274, 118973.

[26]

Li, A.; Li, C. F.; Xiong, P. X.; Zhang, J. F.; Geng, D. L.; Xu, Y. H. Rapid synthesis of layered KxMnO2 cathodes from metal-organic frameworks for potassium-ion batteries. Chem. Sci. 2022, 13, 7575–7580.

[27]

Zhou, J.; Mao, L. J.; Wu, M. X.; Peng, Z. Y.; Yang, Y. M.; Zhou, M. F.; Zhao, X. L.; Shi, X. L.; Yang, H. B. Extended phenothiazines: Synthesis, photophysical and redox properties, and efficient photocatalytic oxidative coupling of amines. Chem. Sci. 2022, 13, 5252–5260.

[28]

Li, A.; Wang, T.; Chang, X. X.; Cai, W. T.; Zhang, P.; Zhang, J. J.; Gong, J. L. Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO2@MnOx hollow spheres for photocatalytic reactions. Chem. Sci. 2016, 7, 890–895.

[29]

Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.

[30]

Fu, C. F.; Li, X. X.; Yang, J. L. A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: Simultaneously suppressing electron–hole recombination and photocorrosion. Chem. Sci. 2021, 12, 2863–2869.

[31]

Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem., Int. Ed. 2018, 57, 5379–5383.

[32]

Zheng, S.; Yang, P. Y.; Zhang, F. M.; Chen, D. L.; Zhu, W. D. Pd nanoparticles encaged within amine-functionalized metal-organic frameworks: Catalytic activity and reaction mechanism in the hydrogenation of 2,3,5-trimethylbenzoquinone. Chem. Eng. J. 2017, 328, 977–987.

[33]

Mondal, S.; Sahoo, L.; Vinod, C. P.; Gautam, U. K. Facile transfer of excited electrons in Au/SnS2 nanosheets for efficient solar-driven selective organic transformations. Appl. Catal. B: Environ. 2021, 286, 119927.

[34]

Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions. J. Mater. Chem. 2012, 22, 5042–5052.

[35]

Wang, Y.; Shang, X. T.; Shen, J. N.; Zhang, Z. Z.; Wang, D. B.; Lin, J. J.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X.; Li, C. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 2020, 11, 3043.

[36]

Crake, A.; Christoforidis, K. C.; Kafizas, A.; Zafeiratos, S.; Petit, C. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Appl. Catal. B: Environ. 2017, 210, 131–140.

[37]

Wang, X. S.; Chen, C. H.; Ichihara, F.; Oshikiri, M.; Liang, J.; Li, L.; Li, Y. X.; Song, H.; Wang, S. Y.; Zhang, T. et al. Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Appl. Catal. B: Environ. 2019, 253, 323–330.

[38]

Zhang, W. L.; Shi, W. X.; Ji, W. L.; Wu, H. B.; Gu, Z. D.; Wang, P.; Li, X. H.; Qin, P. S.; Zhang, J.; Fan, Y. et al. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes. ACS Catal. 2020, 10, 5805–5813.

[39]

Hao, M. M.; Li, Z. H. Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr). Appl. Catal. B: Environ. 2022, 305, 121031.

[40]

Wu, Y.; Li, X. M.; Zhao, H.; Yao, F. B.; Cao, J.; Chen, Z.; Wang, D. B.; Yang, Q. Core–shell structured Cu2O@HKUST-1 heterojunction photocatalyst with robust stability for highly efficient tetracycline hydrochloride degradation under visible light. Chem. Eng. J. 2021, 426, 131255.

[41]

Cao, X.; Huang, A. J.; Liang, C.; Chen, H. C.; Han, T.; Lin, R.; Peng, Q.; Zhuang, Z. W.; Shen, R. A.; Chen, H. M. et al. Engineering lattice disorder on a photocatalyst: Photochromic BiOBr nanosheets enhance activation of aromatic C–H bonds via water oxidation. J. Am. Chem. Soc. 2022, 144, 3386–3397.

[42]

Cheng, X. M.; Dao, X. Y.; Wang, S. Q.; Zhao, J.; Sun, W. Y. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal. 2021, 11, 650–658.

[43]

Ma, X.; Liu, H.; Yang, W. J.; Mao, G. Y.; Zheng, L. R.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220–12229.

[44]

Guo, F.; Yang, S. Z.; Liu, Y.; Wang, P.; Huang, J. E.; Sun, W. Y. Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction. ACS Catal. 2019, 9, 8464–8470.

[45]

Xing, C. W.; Yu, G. Y.; Chen, T.; Liu, S. S.; Sun, Q. Q.; Liu, Q.; Hu, Y. J.; Liu, H. Y.; Li, X. Y. Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Appl. Catal. B: Environ. 2021, 298, 120534.

[46]

Xu, Y.; Chen, Y.; Fu, W. F. Visible-light driven oxidative coupling of amines to imines with high selectivity in air over core–shell structured CdS@C3N4. Appl. Catal. B: Environ. 2018, 236, 176–183.

[47]

Yu, J.; Liu, Q.; Qiao, W.; Lv, D. D.; Li, Y. R.; Liu, C. B.; Yu, Y. F.; Li, Y. W.; Niemantsverdriet, H.; Zhang, B. et al. Catalytic role of metal nanoparticles in selectivity control over photodehydrogenative coupling of primary amines to imines and secondary amines. ACS Catal. 2021, 11, 6656–6661.

[48]

Chen, B.; Wang, L. Y.; Dai, W.; Shang, S. S.; Lv, Y.; Gao, S. Metal-free and solvent-free oxidative coupling of amines to imines with mesoporous carbon from macrocyclic compounds. ACS Catal. 2015, 5, 2788–2794.

[49]

Gopakumar, A.; Ren, P.; Chen, J. H.; Rodrigues, B. V. M.; Ching, H. Y. V.; Jaworski, A.; Van Doorslaer, S.; Rokicińska, A.; Kuśtrowski, P.; Barcaro, G. et al. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. J. Am. Chem. Soc. 2022, 144, 2603–2613.

File
12274_2022_5144_MOESM1_ESM.pdf (1.1 MB)
12274_2022_5144_MOESM2_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 September 2022
Revised: 25 September 2022
Accepted: 03 October 2022
Published: 23 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21771163 and 22171247) and Zhongyuan thousand talents project.

Return