Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Spatial separation of oxidation/reduction cocatalyst is an effective means to improve the efficiency of charge separation in photocatalytic reaction systems. Herein, a yolk–shell Pd@NH2-UiO-66@Cu2O heterojunction was designed and synthesized by integration of electron collector Pd and hole collector Cu2O inside and outside of a photoactive metal-organic framework (MOF) NH2-UiO-66, respectively. The obtained Pd@NH2-UiO-66@Cu2O heterojunction effectively inhibits the electron and hole recombination through the photo-induced electrons and holes flow inward and outward of the composite, and promotes the reduction and oxidation abilities for the oxidative coupling of benzylamine to imines. Compared with Pd/NH2-UiO-66@Cu2O, Pd@NH2-UiO-66, and Pd/NH2-UiO-66, Pd@NH2-UiO-66@Cu2O exhibits the highest photocatalytic activity. More importantly, Pd@NH2-UiO-66@Cu2O shows a conversion rate of benzylamine up to 99% either by oxidation under aerobic conditions or by strong adsorption of H atom (Hads) under anaerobic conditions. In addition, the catalyst shows good stability and can be recycled at least ten times. This work provides useful guidance on construction of MOFs-based composites with spatially separated photoinduced charge carriers to realize efficient oxidation coupling of benzylamine in both aerobic and anaerobic conditions.
Vesely, J.; Rios, R. Enantioselective methodologies using N-carbamoyl-imines. Chem. Soc. Rev. 2014, 43, 611–630.
Zhang, N.; Li, X. Y.; Liu, Y. F.; Long, R.; Li, M. Q.; Chen, S. M.; Qi, Z. M.; Wang, C. M.; Song, L.; Jiang, J. et al. Defective tungsten oxide hydrate nanosheets for boosting aerobic coupling of amines: Synergistic catalysis by oxygen vacancies and brønsted acid sites. Small 2017, 13, 1701354.
Raza, F.; Park, J. H.; Lee, H. R.; Kim, H. I.; Jeon, S. J.; Kim, J. H. Visible-light-driven oxidative coupling reactions of amines by photoactive WS2 nanosheets. ACS Catal. 2016, 6, 2754–2759.
Park, J. H.; Raza, F.; Jeon, S. J.; Yim, D.; Kim, H. I.; Kang, T. W.; Kim, J. H. Oxygen-mediated formation of MoSx-doped hollow carbon dots for visible light-driven photocatalysis. J. Mater. Chem. A 2016, 4, 14796–14803.
Girish, Y. R.; Biswas, R.; De, M. Mixed-phase 2D-MoS2 as an effective photocatalyst for selective aerobic oxidative coupling of amines under visible-light irradiation. Chem.—Eur. J. 2018, 24, 13871–13878.
Lang, X. J.; Ji, H. W.; Chen, C. C.; Ma, W. H.; Zhao, J. C. Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew. Chem., Int. Ed. 2011, 50, 3934–3937.
Zhang, J. J.; Ge, J. M.; Wang, H. H.; Wei, X.; Li, X. H.; Chen, J. S. Activating oxygen molecules over carbonyl-modified graphitic carbon nitride: Merging supramolecular oxidation with photocatalysis in a metal-free catalyst for oxidative coupling of amines into imines. ChemCatChem 2016, 8, 3441–3445.
Kayser, L. V.; Vollmer, M.; Welnhofer, M.; Krikcziokat, H.; Meerholz, K.; Arndtsen, B. A. Metal-free, multicomponent synthesis of pyrrole-based π-conjugated polymers from imines, acid chlorides, and alkynes. J. Am. Chem. Soc. 2016, 138, 10516–10521.
Xu, W. T.; Pei, X. K.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526.
Li, X.; Yang, S. X.; Zhang, F. L.; Zheng, L. Y.; Lang, X. J. Facile synthesis of 2D covalent organic frameworks for cooperative photocatalysis with TEMPO: The selective aerobic oxidation of benzyl amines. Appl. Catal. B: Environ. 2022, 303, 120846.
Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C–N bond formation in one photoredox cycle. Angew. Chem., Int. Ed. 2021, 60, 7962–7970.
Wang, T.; Tao, X. Q.; Xiao, Y.; Qiu, G. H.; Yang, Y.; Li, B. X. Charge separation and molecule activation promoted by Pd/MIL-125-NH2 hybrid structures for selective oxidation reactions. Catal. Sci. Technol. 2020, 10, 138–146.
Shen, Q. Y.; Zhou, S.; Yang, F. L.; Wang, X. J.; Han, X. G. Engineering one-dimensional hollow beta-In2S3/In2O3 hexagonal micro-tubes for efficient broadband-light photocatalytic performance. J. Mater. Chem. A 2022, 10, 4974–4980.
Wang, D. A.; Hisatomi, T.; Takata, T.; Pan, C. S.; Katayama, M.; Kubota, J.; Domen, K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew. Chem., Int. Ed. 2013, 52, 11252–11256.
Shen, Q. Y.; Xu, T. Y.; Zhuang, G. L.; Zhuang, Y.; Sun, L. M.; Han, X. G.; Wang, X. J.; Zhan, W. W. Spatially separated photoinduced charge carriers for the enhanced photocatalysis over the one-dimensional yolk–shell In2Se3@N-C nanoreactor. ACS Catal. 2021, 11, 12931–12939.
Xing, M. Y.; Qiu, B. C.; Du, M. M.; Zhu, Q. H.; Wang, L. Z.; Zhang, J. L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1702624.
Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.
Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.
Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat. Protoc. 2016, 11, 149–162.
Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem., Int. Ed. 2004, 43, 6296–6301.
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.
Zhang, J. J.; Bai, T. Y.; Huang, H.; Yu, M. H.; Fan, X. B.; Chang, Z.; Bu, X. H. Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 2020, 32, 2004747.
Rimoldi, M.; Howarth, A. J.; DeStefano, M. R.; Lin, L.; Goswami, S.; Li, P.; Hupp, J. T.; Farha, O. K. Catalytic zirconium/hafnium-based metal-organic frameworks. ACS Catal. 2017, 7, 997–1014.
Jiao, L.; Wang, J. X.; Jiang, H. L. Microenvironment modulation in metal-organic framework-based catalysis. Acc. Mater. Res. 2021, 2, 327–339.
Ren, J. W.; Lv, S.; Wang, S. Q.; Bao, M. J.; Zhang, X.; Gao, Y.; Liu, Y. Y.; Zhang, Z. G.; Zeng, L. B.; Ke, J. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification. Sep. Purif. Technol. 2021, 274, 118973.
Li, A.; Li, C. F.; Xiong, P. X.; Zhang, J. F.; Geng, D. L.; Xu, Y. H. Rapid synthesis of layered KxMnO2 cathodes from metal-organic frameworks for potassium-ion batteries. Chem. Sci. 2022, 13, 7575–7580.
Zhou, J.; Mao, L. J.; Wu, M. X.; Peng, Z. Y.; Yang, Y. M.; Zhou, M. F.; Zhao, X. L.; Shi, X. L.; Yang, H. B. Extended phenothiazines: Synthesis, photophysical and redox properties, and efficient photocatalytic oxidative coupling of amines. Chem. Sci. 2022, 13, 5252–5260.
Li, A.; Wang, T.; Chang, X. X.; Cai, W. T.; Zhang, P.; Zhang, J. J.; Gong, J. L. Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO2@MnOx hollow spheres for photocatalytic reactions. Chem. Sci. 2016, 7, 890–895.
Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.
Fu, C. F.; Li, X. X.; Yang, J. L. A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: Simultaneously suppressing electron–hole recombination and photocorrosion. Chem. Sci. 2021, 12, 2863–2869.
Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem., Int. Ed. 2018, 57, 5379–5383.
Zheng, S.; Yang, P. Y.; Zhang, F. M.; Chen, D. L.; Zhu, W. D. Pd nanoparticles encaged within amine-functionalized metal-organic frameworks: Catalytic activity and reaction mechanism in the hydrogenation of 2,3,5-trimethylbenzoquinone. Chem. Eng. J. 2017, 328, 977–987.
Mondal, S.; Sahoo, L.; Vinod, C. P.; Gautam, U. K. Facile transfer of excited electrons in Au/SnS2 nanosheets for efficient solar-driven selective organic transformations. Appl. Catal. B: Environ. 2021, 286, 119927.
Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions. J. Mater. Chem. 2012, 22, 5042–5052.
Wang, Y.; Shang, X. T.; Shen, J. N.; Zhang, Z. Z.; Wang, D. B.; Lin, J. J.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X.; Li, C. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 2020, 11, 3043.
Crake, A.; Christoforidis, K. C.; Kafizas, A.; Zafeiratos, S.; Petit, C. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Appl. Catal. B: Environ. 2017, 210, 131–140.
Wang, X. S.; Chen, C. H.; Ichihara, F.; Oshikiri, M.; Liang, J.; Li, L.; Li, Y. X.; Song, H.; Wang, S. Y.; Zhang, T. et al. Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Appl. Catal. B: Environ. 2019, 253, 323–330.
Zhang, W. L.; Shi, W. X.; Ji, W. L.; Wu, H. B.; Gu, Z. D.; Wang, P.; Li, X. H.; Qin, P. S.; Zhang, J.; Fan, Y. et al. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes. ACS Catal. 2020, 10, 5805–5813.
Hao, M. M.; Li, Z. H. Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr). Appl. Catal. B: Environ. 2022, 305, 121031.
Wu, Y.; Li, X. M.; Zhao, H.; Yao, F. B.; Cao, J.; Chen, Z.; Wang, D. B.; Yang, Q. Core–shell structured Cu2O@HKUST-1 heterojunction photocatalyst with robust stability for highly efficient tetracycline hydrochloride degradation under visible light. Chem. Eng. J. 2021, 426, 131255.
Cao, X.; Huang, A. J.; Liang, C.; Chen, H. C.; Han, T.; Lin, R.; Peng, Q.; Zhuang, Z. W.; Shen, R. A.; Chen, H. M. et al. Engineering lattice disorder on a photocatalyst: Photochromic BiOBr nanosheets enhance activation of aromatic C–H bonds via water oxidation. J. Am. Chem. Soc. 2022, 144, 3386–3397.
Cheng, X. M.; Dao, X. Y.; Wang, S. Q.; Zhao, J.; Sun, W. Y. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal. 2021, 11, 650–658.
Ma, X.; Liu, H.; Yang, W. J.; Mao, G. Y.; Zheng, L. R.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220–12229.
Guo, F.; Yang, S. Z.; Liu, Y.; Wang, P.; Huang, J. E.; Sun, W. Y. Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction. ACS Catal. 2019, 9, 8464–8470.
Xing, C. W.; Yu, G. Y.; Chen, T.; Liu, S. S.; Sun, Q. Q.; Liu, Q.; Hu, Y. J.; Liu, H. Y.; Li, X. Y. Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Appl. Catal. B: Environ. 2021, 298, 120534.
Xu, Y.; Chen, Y.; Fu, W. F. Visible-light driven oxidative coupling of amines to imines with high selectivity in air over core–shell structured CdS@C3N4. Appl. Catal. B: Environ. 2018, 236, 176–183.
Yu, J.; Liu, Q.; Qiao, W.; Lv, D. D.; Li, Y. R.; Liu, C. B.; Yu, Y. F.; Li, Y. W.; Niemantsverdriet, H.; Zhang, B. et al. Catalytic role of metal nanoparticles in selectivity control over photodehydrogenative coupling of primary amines to imines and secondary amines. ACS Catal. 2021, 11, 6656–6661.
Chen, B.; Wang, L. Y.; Dai, W.; Shang, S. S.; Lv, Y.; Gao, S. Metal-free and solvent-free oxidative coupling of amines to imines with mesoporous carbon from macrocyclic compounds. ACS Catal. 2015, 5, 2788–2794.
Gopakumar, A.; Ren, P.; Chen, J. H.; Rodrigues, B. V. M.; Ching, H. Y. V.; Jaworski, A.; Van Doorslaer, S.; Rokicińska, A.; Kuśtrowski, P.; Barcaro, G. et al. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. J. Am. Chem. Soc. 2022, 144, 2603–2613.