Journal Home > Volume 16 , Issue 2

Neuroinflammation, commonly associated with various central nervous system (CNS) diseases such as postoperative cognitive dysfunction (POCD), is primarily mediated by the disruption of biological signals in microglia. However, the effective treatment of CNS diseases remains an ongoing challenge as biological signals show limited microglia-targeting effect. In this study, taking advantage of the highly expressed lipoprotein receptor-related protein-1 (LRP1) on the microglia, a nanobiosignal delivery system modified by LRP1 high-affinity peptide ligand RAP12 (RAP: receptor-associated protein) was constructed to specifically regulate neuroinflammation via targeting microglia. The uptake of the RAP12 modified-nanobiosignaler by microglia increased significantly, indicating its microglia-targeting ability. Both in vitro/vivo studies proved that the “nanobiosignaler” significantly reduced the secretion of pro-inflammatory cytokines, induced specific M2 (anti-inflammatory type) microglia differentiation, and remarkably alleviated cognitive function impairment in the mice model when compared with unmodified groups. It was indicated that the “nanobiosignaler” could target microglia to deliver the biological signal and inhibit the excessive activation of microglia. Overall, the cell-targeted biological signal transmission system inspired by “nanobiosignaler” has broad application prospects in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Targeted regulation of neuroinflammation via nanobiosignaler for repairing the central nerve system injuries

Show Author's information Xiaoru Sun1,3,4,§Huitong Ruan2,§( )Qidong Liu1,3,4Silu Cao1,3,4Qi Jing1,3,4Yaru Xu1,3,4Lize Xiong1,3,4( )Wenguo Cui2( )Cheng Li1,3,4( )
Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China

§ Xiaoru Sun and Huitong Ruan contributed equally to this work.

Abstract

Neuroinflammation, commonly associated with various central nervous system (CNS) diseases such as postoperative cognitive dysfunction (POCD), is primarily mediated by the disruption of biological signals in microglia. However, the effective treatment of CNS diseases remains an ongoing challenge as biological signals show limited microglia-targeting effect. In this study, taking advantage of the highly expressed lipoprotein receptor-related protein-1 (LRP1) on the microglia, a nanobiosignal delivery system modified by LRP1 high-affinity peptide ligand RAP12 (RAP: receptor-associated protein) was constructed to specifically regulate neuroinflammation via targeting microglia. The uptake of the RAP12 modified-nanobiosignaler by microglia increased significantly, indicating its microglia-targeting ability. Both in vitro/vivo studies proved that the “nanobiosignaler” significantly reduced the secretion of pro-inflammatory cytokines, induced specific M2 (anti-inflammatory type) microglia differentiation, and remarkably alleviated cognitive function impairment in the mice model when compared with unmodified groups. It was indicated that the “nanobiosignaler” could target microglia to deliver the biological signal and inhibit the excessive activation of microglia. Overall, the cell-targeted biological signal transmission system inspired by “nanobiosignaler” has broad application prospects in the future.

Keywords: microglia, nanoparticles, neuroinflammation, biosignal, targeted delivery

References(54)

[1]

Salter, M. W.; Beggs, S. Sublime microglia: Expanding roles for the guardians of the CNS. Cell 2014, 158, 15–24.

[2]

Leng, F. D.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021, 17, 157–172.

[3]

Glass, C. K.; Saijo, K.; Winner, B.; Marchetto, M. C.; Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934.

[4]

Becher, B.; Spath, S.; Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 2017, 17, 49–59.

[5]

Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci. 2018, 21, 1359–1369.

[6]

Choi, S. H.; Bylykbashi, E.; Chatila, Z. K.; Lee, S. W.; Pulli, B.; Clemenson, G. D.; Kim, E.; Rompala, A.; Oram, M. K.; Asselin, C. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 2018, 361, eaan8821.

[7]

Kaplitt, M. G.; Feigin, A.; Tang, C. K.; Fitzsimons, H. L.; Mattis, P.; Lawlor, P. A.; Bland, R. J.; Young, D.; Strybing, K.; Eidelberg, D. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: An open label, phase I trial. Lancet 2007, 369, 2097–2105.

[8]

Qiu, L. L.; Pan, W.; Luo, D.; Zhang, G. F.; Zhou, Z. Q.; Sun, X. Y.; Yang, J. J.; Ji, M. H. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J. Neuroinflamm. 2020, 17, 23.

[9]
Zhang, J. Q.; Rong, P. J.; Zhang, L. J.; He, H.; Zhou, T.; Fan, Y. H.; Mo, L.; Zhao, Q. Y.; Han, Y.; Li, S. Y. et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci. Adv. 2021, 7, eabb9888.
DOI
[10]

Xue, M. Z.; Yong, V. W. Neuroinflammation in intracerebral haemorrhage: Immunotherapies with potential for translation. Lancet Neurol. 2020, 19, 1023–1032.

[11]

Jin, X.; Liu, M. Y.; Zhang, D. F.; Zhong, X.; Du, K.; Qian, P.; Gao, H.; Wei, M. J. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol. Res. 2019, 145, 104253.

[12]

Hang, X. Y.; Zhang, Y. J.; Li, J. J.; Li, Z. Z.; Zhang, Y.; Ye, X. H.; Tang, Q. S.; Sun, W. J. Comparative efficacy and acceptability of anti-inflammatory agents on major depressive disorder: A network meta-analysis. Front. Pharmacol. 2021, 12, 691200.

[13]

Heneka, M. T.; Carson, M. J.; El Khoury, J.; Landreth, G. E.; Brosseron, F.; Feinstein, D. L.; Jacobs, A. H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R. M. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405.

[14]

Tang, Y.; Le, W. D. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 2016, 53, 1181–1194.

[15]

Mecha, M.; Carrillo-Salinas, F. J.; Feliú, A.; Mestre, L.; Guaza, C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol. Ther. 2016, 166, 40–55.

[16]

Saxena, S.; Kruys, V.; Vamecq, J.; Maze, M. The role of microglia in perioperative neuroinflammation and neurocognitive disorders. Front. Aging Neurosci. 2021, 13, 671499.

[17]

Wang, R.; Holsinger, R. M. D. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev. 2018, 48, 109–121.

[18]

McGrattan, A. M.; McGuinness, B.; McKinley, M. C.; Kee, F.; Passmore, P.; Woodside, J. V.; McEvoy, C. T. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr. Nutr. Rep. 2019, 8, 53–65.

[19]

Wiesmann, M.; Zinnhardt, B.; Reinhardt, D.; Eligehausen, S.; Wachsmuth, L.; Hermann, S.; Dederen, P. J.; Hellwich, M.; Kuhlmann, M. T.; Broersen, L. M. et al. A specific dietary intervention to restore brain structure and function after ischemic stroke. Theranostics 2017, 7, 493–512.

[20]

Nagahara, A. H.; Tuszynski, M. H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 2011, 10, 209–219.

[21]

Prowse, N.; Hayley, S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci. Biobehav. Rev. 2021, 131, 135–163.

[22]

Spencer-Segal, J. L.; Waters, E. M.; Bath, K. G.; Chao, M. V.; McEwen, B. S.; Milner, T. A. Distribution of phosphorylated TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage. J. Neurosci. 2011, 31, 6780–6790.

[23]

Xi, K.; Gu, Y.; Tang, J. C.; Chen, H.; Xu, Y.; Wu, L.; Cai, F.; Deng, L. F.; Yang, H. L.; Shi, Q. et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat. Commun. 2020, 11, 4504.

[24]

Tsui, C.; Koss, K.; Churchward, M. A.; Todd, K. G. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater. 2019, 83, 13–28.

[25]

Wang, H.; Zhang, H.; Xie, Z. Y.; Chen, K.; Ma, M. J.; Huang, Y. J.; Li, M. L.; Cai, Z. P.; Wang, P.; Shen, H. Y. Injectable hydrogels for spinal cord injury repair. Eng. Regener. 2022, 3, 407–419.

[26]

Maus, A.; Strait, L.; Zhu, D. H. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Eng. Regener. 2021, 2, 31–46.

[27]

Yang, J. L.; Zhang, X. C.; Liu, C.; Wang, Z.; Deng, L. F.; Feng, C.; Tao, W.; Xu, X. Y.; Cui, W. G. Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 2021, 118, 100768.

[28]

Zhao, D. J.; Tang, Y. Q.; Suo, X. J.; Zhang, C. N.; Dou, Y.; Chang, J. A dual-targeted multifunctional nanoformulation for potential prevention and therapy of Alzheimer’s disease. Innovation 2021, 2, 100160.

[29]

Cerqueira, S. R.; Oliveira, J. M.; Silva, N. A.; Leite-Almeida, H.; Ribeiro-Samy, S.; Almeida, A.; Mano, J. F.; Sousa, N.; Salgado, A. J.; Reis, R. L. Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small 2013, 9, 738–749.

[30]

Ruan, H. T.; Chai, Z. L.; Shen, Q.; Chen, X. S.; Su, B. X.; Xie, C.; Zhan, C. Y.; Yao, S. Y.; Wang, H.; Zhang, M. F. et al. A novel peptide ligand RAP12 of LRP1 for glioma targeted drug delivery. J. Controlled Release 2018, 279, 306–315.

[31]

Ruan, H. T.; Yao, S. Y.; Wang, S. L.; Wang, R. F.; Xie, C.; Guo, H. Y.; Lu, W. Y. Stapled RAP12 peptide ligand of LRP1 for micelles-based multifunctional glioma-targeted drug delivery. Chem. Eng. J. 2021, 403, 126296.

[32]

Brifault, C.; Kwon, H.; Campana, W. M.; Gonias, S. L. LRP1 deficiency in microglia blocks neuro-inflammation in the spinal dorsal horn and neuropathic pain processing. Glia 2019, 67, 1210–1224.

[33]

Yang, L. Y.; Liu, C. C.; Zheng, H. H.; Kanekiyo, T.; Atagi, Y.; Jia, L.; Wang, D. X.; N’Songo, A.; Can, D.; Xu, H. X. et al. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J. Neuroinflammation 2016, 13, 304.

[34]

Lillis, A. P.; van Duyn, L. B.; Murphy-Ullrich, J. E.; Strickland, D. K. LDL receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 2008, 88, 887–918.

[35]

Bannerman, D. M.; Sprengel, R.; Sanderson, D. J.; McHugh, S. B.; Rawlins, J. N. P.; Monyer, H.; Seeburg, P. H. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 2014, 15, 181–192.

[36]

Vutskits, L.; Xie, Z. C. Lasting impact of general anaesthesia on the brain: Mechanisms and relevance. Nat. Rev. Neurosci. 2016, 17, 705–717.

[37]

Mashour, G. A.; Woodrum, D. T.; Avidan, M. S. Neurological complications of surgery and anaesthesia. Br. J. Anaesth. 2015, 114, 194–203.

[38]

Deiner, S.; Liu, X. Y.; Lin, H. M.; Jacoby, R.; Kim, J.; Baxter, M. G.; Sieber, F.; Boockvar, K.; Sano, M. Does postoperative cognitive decline result in new disability after surgery? Ann. Surg. 2021, 274, e1108–e1114.

[39]

Wang, S. L.; Wang, R. F.; Meng, N. N.; Guo, H. Y.; Wu, S. Y.; Wang, X. Y.; Li, J. Y.; Wang, H.; Jiang, K.; Xie, C. et al. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J. Controlled Release 2020, 328, 78–86.

[40]

Lu, Y. Y.; Chen, L.; Ye, J. S.; Chen, C.; Zhou, Y.; Li, K.; Zhang, Z. Z.; Peng, M. Surgery/anesthesia disturbs mitochondrial fission/fusion dynamics in the brain of aged mice with postoperative delirium. Aging 2020, 12, 844–865.

[41]

Hu, R.; Wei, P.; Jin, L.; Zheng, T.; Chen, W. Y.; Liu, X. Y.; Shi, X. D.; Hao, J. R.; Sun, N.; Gao, C. Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model. Cell Death Dis. 2017, 8, e2717.

[42]

Wu, T.; Sun, X. Y.; Yang, X.; Liu, L.; Tong, K.; Gao, Y.; Hao, J. R.; Cao, J.; Gao, C. Histone H3K9 trimethylation downregulates the expression of brain-derived neurotrophic factor in the dorsal hippocampus and impairs memory formation during anaesthesia and surgery. Front. Mol. Neurosci. 2019, 12, 246.

[43]

Xu, C.; Krabbe, S.; Gründemann, J.; Botta, P.; Fadok, J. P.; Osakada, F.; Saur, D.; Grewe, B. F.; Schnitzer, M. J.; Callaway, E. M. et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 2016, 167, 961–972.e16.

[44]

Terrando, N.; Monaco, C.; Ma, D. Q.; Foxwell, B. M. J.; Feldmann, M.; Maze, M. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl. Acad. Sci. USA 2010, 107, 20518–20522.

[45]

Chen, Y.; Sun, J. X.; Chen, W. K.; Wu, G. C.; Wang, Y. Q.; Zhu, K. Y.; Wang, J. miR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation. Signal Transduct. Target. Ther. 2019, 4, 27.

[46]

Lee, J. H.; Kam, E. H.; Kim, S. Y.; Cheon, S. Y.; Kim, E. J.; Chung, S.; Jeong, J. H.; Koo, B. N. Erythropoietin attenuates postoperative cognitive dysfunction by shifting macrophage activation toward the M2 phenotype. Front. Pharmacol. 2017, 8, 839.

[47]

Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A. I.; Kempe, K.; Caruso, F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 2018, 30, 1801362.

[48]

Xie, J. B.; Shen, Z. Y.; Anraku, Y.; Kataoka, K.; Chen, X. Y. Nanomaterial-based blood–brain-barrier (BBB) crossing strategies. Biomaterials 2019, 224, 119491.

[49]
Ruan, H. T.; Li, Y. F.; Wang, C.; Jiang, Y. X.; Han, Y. L.; Li, Y. W.; Zheng, D. D.; Ye, J.; Chen, G.; Yang, G. Y. et al. Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharm. Sin. B, in press, https://doi.org/10.1016/j.apsb.2022.06.007.
DOI
[50]

Wu, S. Y.; Pan, B. S.; Tsai, S. F.; Chiang, Y. T.; Huang, B. M.; Mo, F. E.; Kuo, Y. M. BDNF reverses aging-related microglial activation. J. Neuroinflammation 2020, 17, 210.

[51]

Bovolenta, R.; Zucchini, S.; Paradiso, B.; Rodi, D.; Merigo, F.; Navarro Mora, G.; Osculati, F.; Berto, E.; Marconi, P.; Marzola, A. et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J. Neuroinflammation 2010, 7, 81.

[52]

Makar, T. K.; Trisler, D.; Sura, K. T.; Sultana, S.; Patel, N.; Bever, C. T. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J. Neurol. Sci. 2008, 270, 70–76.

[53]
ZhangL.ZhangJ.YangL.DongY.ZhangY.XieZ. Isoflurane and sevoflurane increase interleukin-6 levels through the nuclear factor-kappa B pathway in neuroglioma cellsBr. J. Anaesth.2013110 Suppl 1i82i9110.1093/bja/aet115

Zhang, L.; Zhang, J.; Yang, L.; Dong, Y.; Zhang, Y.; Xie, Z. Isoflurane and sevoflurane increase interleukin-6 levels through the nuclear factor-kappa B pathway in neuroglioma cells. Br. J. Anaesth. 2013, 110 Suppl 1, i82–i91.

[54]

Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308, 1314–1318.

File
12274_2022_5143_MOESM1_ESM.pdf (382.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 August 2022
Revised: 01 October 2022
Accepted: 02 October 2022
Published: 25 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The present study was supported by the Found of National Natural Science Foundation of China (Nos. 82003658, 82101261, 81930051, and 82271223), Shanghai Fourth People’s Hospital, School of Medicine, Tongji University (Nos. sykyqd01901 and SY-XKZT-2021-2001), and Natural Science Foundation of Shanghai (No. 16ZR1426400).

Return