AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Albumin-based multidrug delivery system enriched in Golgi apparatus against metastatic breast cancer

Chenqi GuoXiong PengTing ZhaoJiaxing FengZhaofei GuoMengying WuRongping ZhangXun SunYuan HuangZhirong ZhangTao Gong( )
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
Show Author Information

Graphical Abstract

The text reports a combination therapy strategy based on co-delivering a cyclooxygenase-2 (COX-2) inhibitor and a Golgi disrupting agent to Golgi apparatus in tumor cells for adjuvant chemotherapy. The multidrug delivery system exhibits great anti-tumor and anti-metastasis efficacy and possesses excellent potential for clinical translation owing to the commercially available materials and drugs.

Abstract

Breast cancer and metastasis remain great challenges in clinical therapy. Compared with monotherapy, combination therapy, especially mediated by nanomedicine delivery strategy, significantly improves the therapeutic efficacy and reduces undesired toxicity. Cyclooxygenase-2 (COX-2) inhibitors are widely used for adjuvant chemotherapy because COX-2 is overexpressed in virtually all cancer cell lines to regulate tumor progression by catalyzing prostaglandin E2 (PGE2) synthesis. This drug combination strategy is still required to be improved due to some unsatisfactory clinical trial results. Intricate processes of tumor growth and metastasis are orchestrated by multiple proteins in addition to COX-2, which are modified and transported by Golgi apparatus. Hence, disrupting the structure and function of Golgi apparatus can inhibit the secretion of tumor-related proteins and further suppress carcinoma progression and metastasis. Since COX-2 is also enriched within Golgi apparatus in tumor cells, COX-2 inhibitors and Golgi disrupting agents can be co-delivered to Golgi apparatus to maximize the synergy. In this work, we developed a human serum albumin (HSA) nanoparticle encapsulating pirarubicin (THP), retinoic acid (RA), and indomethacin (IMC), called TIR-HSA, which was observed to be localized in Golgi complex of 4T1 cells. Owing to the synergistic effect of these three drugs, TIR-HSA inhibited the proliferation, migration, and invasion of tumor cells, enhanced the apoptotic rate, and improved the immunosuppressive tumor microenvironment, which remarkably regressed the tumor growth and metastasis and prolonged the survival period of 4T1-bearing mice.

Electronic Supplementary Material

Download File(s)
12274_2022_5141_MOESM1_ESM.pdf (4 MB)

References

[1]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA: Cancer J. Clin. 2022, 72, 7–33.

[2]

Hu, Q. Y.; Sun, W. J.; Wang, C.; Gu, Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 2016, 98, 19–34.

[3]

Wei, G. Q.; Wang, Y.; Yang, G.; Wang, Y.; Ju, R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021, 11, 6370–6392.

[4]

Shen, S. Y.; Liu, M.; Li, T.; Lin, S. Q.; Mo, R. Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomater. Sci. 2017, 5, 1367–1381.

[5]

Hou, J. J.; Karin, M.; Sun, B. C. Targeting cancer-promoting inflammation—Have anti-inflammatory therapies come of age ? Nat. Rev. Clin. Oncol. 2021, 18, 261–279.

[6]

Coussens, L. M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867.

[7]

Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444.

[8]

Goradel, N. H.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell. Physiol. 2019, 234, 5683–5699.

[9]

Greenhough, A.; Smartt, H. J. M.; Moore, A. E.; Roberts, H. R.; Williams, A. C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009, 30, 377–386.

[10]

Tudor, D. V.; Bâldea, I.; Lupu, M.; Kacso, T.; Kutasi, E.; Hopârtean, A.; Stretea, R.; Filip, A. G. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol. Med. 2020, 17, 20–31.

[11]

Regulski, M.; Regulska, K.; Prukała, W.; Piotrowska, H.; Stanisz, B.; Murias, M. COX-2 inhibitors: A novel strategy in the management of breast cancer. Drug Discov. Today 2016, 21, 598–615.

[12]

Huang, J. S.; Xu, Y. M.; Xiao, H.; Xiao, Z. C.; Guo, Y.; Cheng, D.; Shuai, X. T. Core–shell distinct nanodrug showing on-demand sequential drug release to act on multiple cell types for synergistic anticancer therapy. ACS Nano 2019, 13, 7036–7049.

[13]

Zhang, C. Y.; Long, L.; Xiong, Y.; Wang, C. P.; Peng, C. P.; Yuan, Y. C.; Liu, Z. R.; Lin, Y. Y.; Jia, Y.; Zhou, X. et al. Facile engineering of indomethacin-induced paclitaxel nanocrystal aggregates as carrier-free nanomedicine with improved synergetic antitumor activity. ACS Appl. Mater. Interfaces 2019, 11, 9872–9883.

[14]

Wang, X.; Cheng, X.; He, L.; Zeng, X. L.; Zheng, Y.; Tang, R. P. Self-assembled indomethacin dimer nanoparticles loaded with doxorubicin for combination therapy in resistant breast cancer. ACS Appl. Mater. Interfaces 2019, 11, 28597–28609.

[15]

Meyerhardt, J. A.; Shi, Q.; Fuchs, C. S.; Meyer, J.; Niedzwiecki, D.; Zemla, T.; Kumthekar, P.; Guthrie, K. A.; Couture, F.; Kuebler, P. et al. Effect of celecoxib vs placebo added to standard adjuvant therapy on disease-free survival among patients with stage III colon cancer: The CALGB/SWOG 80702 (Alliance) randomized clinical trial. JAMA 2021, 325, 1277–1286.

[16]

Coombes, R. C.; Tovey, H.; Kilburn, L.; Mansi, J.; Palmieri, C.; Bartlett, J.; Hicks, J.; Makris, A.; Evans, A.; Loibl, S. et al. Effect of celecoxib vs placebo as adjuvant therapy on disease-free survival among patients with breast cancer: The REACT randomized clinical trial. JAMA Oncol. 2021, 7, 1291–1301.

[17]

Giacchetti, S.; Hamy, A. S.; Delaloge, S.; Brain, E.; Berger, F.; Sigal-Zafrani, B.; Mathieu, M. C.; Bertheau, P.; Guinebretière, J. M.; Saghatchian, M. et al. Y. Long-term outcome of the REMAGUS 02 trial, a multicenter randomised phase II trial in locally advanced breast cancer patients treated with neoadjuvant chemotherapy with or without celecoxib or trastuzumab according to HER2 status. Eur. J. Cancer 2017, 75, 323–332.

[18]

Yu, R. Y.; Xing, L.; Cui, P. F.; Qiao, J. B.; He, Y. J.; Chang, X.; Zhou, T. J.; Jin, Q. R.; Jiang, H. L.; Xiao, Y. Y. Regulating the Golgi apparatus by co-delivery of a COX-2 inhibitor and Brefeldin A for suppression of tumor metastasis. Biomater. Sci. 2018, 6, 2144–2155.

[19]

Wang, R.; Ke, Z. F.; Wang, F.; Zhang, W. H.; Wang, Y. F.; Li, S. H.; Wang, L. T. GOLPH3 overexpression is closely correlated with poor prognosis in human non-small cell lung cancer and mediates its metastasis through upregulating MMP-2 and MMP-9. Cell. Physiol. Biochem. 2015, 35, 969–982.

[20]

Farquhar, M. G.; Palade, G. E. The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. 1998, 8, 2–10.

[21]

Glick, B. S.; Nakano, A. Membrane traffic within the golgi apparatus. Annu. Rev. Cell Dev. Biol. 2009, 25, 113–132.

[22]

Donaldson, J. G.; Lippincott-Schwartz, J. Sorting and signaling at the Golgi complex. Cell 2000, 101, 693–696.

[23]

Xue, F. F.; Wen, Y.; Wei, P.; Gao, Y. L.; Zhou, Z. G.; Xiao, S. Z.; Yi, T. A smart drug: A pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy. Chem. Commun. 2017, 53, 6424–6427.

[24]

Howley, B. V.; Howe, P. H. Metastasis-associated upregulation of ER-Golgi trafficking kinetics: Regulation of cancer progression via the Golgi apparatus. Oncoscience 2018, 5, 142–143.

[25]

Millarte, V.; Farhan, H. The Golgi in cell migration: Regulation by signal transduction and its implications for cancer cell metastasis. Sci. World J. 2012, 2012, 498278.

[26]

Li, H. H.; Zhang, P.; Luo, J. W.; Hu, D. R.; Huang, Y.; Zhang, Z. R.; Fu, Y.; Gong, T. Chondroitin sulfate-linked prodrug nanoparticles target the Golgi apparatus for cancer metastasis treatment. ACS Nano 2019, 13, 9386–9396.

[27]

Wlodkowic, D.; Skommer, J.; McGuinness, D.; Hillier, C.; Darzynkiewicz, Z. ER-Golgi network—A future target for anti-cancer therapy. Leuk. Res. 2009, 33, 1440–1447.

[28]

Uddin, M. J.; Crews, B. C.; Blobaum, A. L.; Kingsley, P. J.; Gorden, D. L.; McIntyre, J. O.; Matrisian, L. M.; Subbaramaiah, K.; Dannenberg, A. J.; Piston, D. W. et al. Selective visualization of cyclooxygenase-2 in inflammation and cancer by targeted fluorescent imaging agents. Cancer Res. 2010, 70, 3618–3627.

[29]

Li, R. S.; Gao, P. F.; Zhang, H. Z.; Zheng, L. L.; Li, C. M.; Wang, J.; Li, Y. F.; Liu, F.; Li, N.; Huang, C. Z. Chiral nanoprobes for targeting and long-term imaging of the Golgi apparatus. Chem. Sci. 2017, 8, 6829–6835.

[30]

Fan, L.; Wang, X. D.; Ge, J. Y.; Li, F.; Zhang, C. H.; Lin, B.; Shuang, S. M.; Dong, C. A Golgi-targeted off-on fluorescent probe for real-time monitoring of pH changes in vivo. Chem. Commun. 2019, 55, 6685–6688.

[31]

Wang, H.; He, Z. X.; Yang, Y. Y.; Zhang, J.; Zhang, W.; Zhang, W.; Li, P.; Tang, B. Ratiometric fluorescence imaging of Golgi H2O2 reveals a correlation between Golgi oxidative stress and hypertension. Chem. Sci. 2019, 10, 10876–10880.

[32]

Zhu, H. C.; Liu, C. Y.; Liang, C. X.; Tian, B.; Zhang, H. M.; Zhang, X.; Sheng, W. L.; Yu, Y. M.; Huang, S. Y.; Zhu, B. C. A new phenylsulfonamide-based Golgi-targeting fluorescent probe for H2S and its bioimaging applications in living cells and zebrafish. Chem. Commun. 2020, 56, 4086–4089.

[33]

Wang, H.; Yang, Y. Y.; Huang, F.; He, Z. X.; Li, P.; Zhang, W.; Zhang, W.; Tang, B. In situ fluorescent and photoacoustic imaging of Golgi pH to elucidate the function of transmembrane protein 165. Anal. Chem. 2020, 92, 3103–3110.

[34]

Zhang, H.; Fan, J. L.; Wang, J. Y.; Zhang, S. Z.; Dou, B. R.; Peng, X. J. An off-on COX-2-specific fluorescent probe: Targeting the Golgi apparatus of cancer cells. J. Am. Chem. Soc. 2013, 135, 11663–11669.

[35]

Zhang, X.; Liu, C. Y.; Chen, Y. N.; Cai, X. Y.; Sheng, W. L.; Zhu, H. C.; Jia, P.; Li, Z. L.; Huang, S. Y.; Zhu, B. C. Visualization of the cysteine level during Golgi stress using a novel Golgi-targeting highly specific fluorescent probe. Chem. Commun. 2020, 56, 1807–1810.

[36]

Chen, J. H.; Liu, H. J.; Yang, L.; Jiang, J.; Bi, G. Q.; Zhang, G. Q.; Li, G. S.; Chen, X. F. Highly selective and efficient synthesis of 7-aminoquinolines and their applications as Golgi-localized probes. ACS Med. Chem. Lett. 2019, 10, 954–959.

[37]

Luo, J. W.; Zhang, P.; Zhao, T.; Jia, M. D.; Yin, P.; Li, W. H.; Zhang, Z. R.; Fu, Y.; Gong, T. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis. ACS nano 2019, 13, 3910–3923.

[38]

Luo, J. W.; Gong, T.; Ma, L. X. Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management. Carbohydr. Polym. 2020, 249, 116887.

[39]

Kianfar, E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnol. 2021, 19, 159.

[40]

Lin, T. T.; Zhao, P. F.; Jiang, Y. F.; Tang, Y. S.; Jin, H. Y.; Pan, Z. Z.; He, H. N.; Yang, V. C.; Huang, Y. Z. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS nano 2016, 10, 9999–10012.

[41]

Hoogenboezem, E. N.; Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 2018, 130, 73–89.

[42]

Lindner, J. L.; Loibl, S.; Denkert, C.; Ataseven, B.; Fasching, P. A.; Pfitzner, B. M.; Gerber, B.; Gade, S.; Darb-Esfahani, S.; Sinn, B. V. et al. Expression of secreted protein acidic and rich in cysteine (SPARC) in breast cancer and response to neoadjuvant chemotherapy. Ann. Oncol. 2015, 26, 95–100.

[43]

Zhou, C. C.; Song, X.; Guo, C. Q.; Tan, Y. L.; Zhao, J.; Yang, Q.; Chen, D.; Tan, T. T.; Sun, X.; Gong, T. et al. Alternative and injectable preformed albumin-bound anticancer drug delivery system for anticancer and antimetastasis treatment. ACS Appl. Mater. Interfaces 2019, 11, 42534–42548.

[44]

Garcia, A. M.; de Alwis Weerasekera, H.; Pitre, S. P.; McNeill, B.; Lissi, E.; Edwards, A. M.; Alarcon, E. I. Photodynamic performance of zinc phthalocyanine in HeLa cells: A comparison between DPCC liposomes and BSA as delivery systems. J. Photochem. Photobiol. B:Biol. 2016, 163, 385–390.

[45]

Munck, J. N.; Riggi, M.; Rougier, P.; Chabot, G. G.; Ramirez, L. H.; Zhao, Z.; Bognel, C.; Ardouin, P.; Herait, P.; Gouyette, A. Pharmacokinetic and pharmacodynamic advantages of pirarubicin over adriamycin after intraarterial hepatic administration in the rabbit VX2 tumor model. Cancer Res. 1993, 53, 1550–1554.

[46]

Matsushita, Y.; Kumagai, H.; Yoshimoto, A.; Tone, H.; Ishikura, T.; Takeuchi, T.; Umezawa, H. Antitumor activities of (2''R)-4'-O-tetrahydropyranyladriamycin (THP) and its combination with other antitumor agents on murine tumors. J. Antibiot. 1985, 38, 1408–1419.

[47]

Yamamoto, Y.; Nasu, Y.; Saika, T.; Akaeda, T.; Tsushima, T.; Kumon, H. The absorption of pirarubicin instilled intravesically immediately after transurethral resection of superficial bladder cancer. BJU Int. 2000, 86, 802–804.

[48]

Yi, X. L.; Lian, X. H.; Dong, J. X.; Wan, Z. Y.; Xia, C. Y.; Song, X.; Fu, Y.; Gong, T.; Zhang, Z. R. Co-delivery of pirarubicin and paclitaxel by human serum albumin nanoparticles to enhance antitumor effect and reduce systemic toxicity in breast cancers. Mol. Pharmaceutics 2015, 12, 4085–4098.

[49]

Gong, T.; Tan, T. T.; Zhang, P.; Li, H. H.; Deng, C. F.; Huang, Y.; Gong, T.; Zhang, Z. R. Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor-A on activated macrophages to treat rheumatoid arthritis. Biomaterials 2020, 258, 120296.

[50]

Tanei, T.; Leonard, F.; Liu, X. W.; Alexander, J. F.; Saito, Y.; Ferrari, M.; Godin, B.; Yokoi, K. Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Cancer Res. 2016, 76, 429–439.

[51]

Ghuman, J.; Zunszain, P. A.; Petitpas, I.; Bhattacharya, A. A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 2005, 353, 38–52.

[52]

Zhu, L. L.; Yang, F.; Chen, L. Q.; Meehan, E. J.; Huang, M. D. A new drug binding subsite on human serum albumin and drug–drug interaction studied by X-ray crystallography. J. Struct. Biol. 2008, 162, 40–49.

[53]

Santibanez, J. F.; Blanco, F. J.; Garrido-Martin, E. M.; Sanz-Rodriguez, F.; del Pozo, M. A.; Bernabeu, C. Caveolin-1 interacts and cooperates with the transforming growth factor-β type I receptor ALK1 in endothelial caveolae. Cardiovasc. Res. 2008, 77, 791–799.

[54]

Tarragó-Trani, M. T.; Storrie, B. Alternate routes for drug delivery to the cell interior: Pathways to the Golgi apparatus and endoplasmic reticulum. Adv. Drug Deliv. Rev. 2007, 59, 782–797.

[55]

Loveridge, C. J.; MacDonald, A. D. H.; Thoms, H. C.; Dunlop, M. G.; Stark, L. A. The proapoptotic effects of sulindac, sulindac sulfone and indomethacin are mediated by nucleolar translocation of the RelA(p65) subunit of NF-κB. Oncogene 2008, 27, 2648–2655.

[56]

Zeng, X. L.; Cheng, X.; Zheng, Y.; Yan, G. Q.; Wang, X.; Wang, J.; Tang, R. P. Indomethacin-grafted and pH-sensitive dextran micelles for overcoming inflammation-mediated multidrug resistance in breast cancer. Carbohydr. Polym. 2020, 237, 116139.

[57]

Nishita, M.; Park, S. Y.; Nishio, T.; Kamizaki, K.; Wang, Z. C.; Tamada, K.; Takumi, T.; Hashimoto, R.; Otani, H.; Pazour, G. J. et al. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci. Rep. 2017, 7, 1.

[58]

Buschman, M. D.; Xing, M. K.; Field, S. J. The GOLPH3 pathway regulates Golgi shape and function and is activated by DNA damage. Front. Neurosci. 2015, 9, 362.

[59]

Guan, X. M. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B 2015, 5, 402–418.

[60]

Suhail, Y.; Cain, M. P.; Vanaja, K.; Kurywchak, P. A.; Levchenko, A.; Kalluri, R.; Kshitiz. Systems biology of cancer metastasis. Cell Syst. 2019, 9, 109–127.

[61]

Welch, D. R.; Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res. 2019, 79, 3011–3027.

[62]

Jin, L. T.; Han, B. C.; Siegel, E.; Cui, Y. K.; Giuliano, A.; Cui, X. J. Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol. Ther. 2018, 19, 858–868.

[63]

Qian, B. Z.; Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51.

[64]

Zou, W. P. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006, 6, 295–307.

[65]

Komohara, Y.; Fujiwara, Y.; Ohnishi, K.; Takeya, M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Deliv. Rev. 2016, 99, 180–185.

[66]

Lu, C.; Rong, D. W.; Zhang, B.; Zheng, W. B.; Wang, X. H.; Chen, Z. Y.; Tang, W. W. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: Challenges and opportunities. Mol. Cancer 2019, 18, 130.

[67]

Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016, 37, 208–220.

[68]

Li, K.; Shi, H. H.; Zhang, B. X.; Ou, X. J.; Ma, Q. Z.; Chen, Y.; Shu, P.; Li, D.; Wang, Y. S. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Sig. Transduct. Target. Ther. 2021, 6, 362.

[69]

Liang, Y. R.; Zhang, H. W.; Song, X. J.; Yang, Q. F. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol. 2020, 60, 14–27.

Nano Research
Pages 5640-5652
Cite this article:
Guo C, Peng X, Zhao T, et al. Albumin-based multidrug delivery system enriched in Golgi apparatus against metastatic breast cancer. Nano Research, 2023, 16(4): 5640-5652. https://doi.org/10.1007/s12274-022-5141-5
Topics:

10793

Views

5

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 01 August 2022
Revised: 29 September 2022
Accepted: 02 October 2022
Published: 19 November 2022
© Tsinghua University Press 2022
Return