Journal Home > Volume 16 , Issue 4

Manipulating the oxidation state of Cu catalysts can significantly affect the selectivity and activity of electrocatalytic carbon dioxide reduction (CO2RR). However, the thermodynamically favorable cathodic reduction to metallic states typically leads to catalytic deactivation. Herein, a defect construction strategy is employed to prepare crystalline/amorphous Cu2+1O/CuOx heterostructures (c/a-CuOx) with abundant Cu0 and Cuδ+ (0 < δ < 1) sites for CO2RR. The C2+ Faradaic efficiency of the heterostructured Cu catalyst is up to 81.3%, with partial current densities of 406.7 mA·cm−2. Significantly, real-time monitoring of the Cu oxidation state evolution by in-situ Raman spectroscopy confirms the stability of Cuδ+ species under long-term high current density operation. Density functional theory (DFT) calculations further reveal that the adjacent Cu0 and Cuδ+ sites in heterostructured c/a-CuOx can efficiently reduce the energy barrier of CO coupling for C2+ products.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cu2+1O/CuOx heterostructures promote the electrosynthesis of C2+ products from CO2

Show Author's information Rongbo Sun1,§Cong Wei1,§Zixiang Huang3,§Shuwen Niu1Xiao Han1Cai Chen1Haoran Wang1Jia Song1Jun-Dong Yi1Geng Wu1Dewei Rao2( )Xusheng Zheng3Yuen Wu1Gongming Wang1( )Xun Hong1( )
Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230026, China

§ Rongbo Sun, Cong Wei, and Zixiang Huang contributed equally to this work.

Abstract

Manipulating the oxidation state of Cu catalysts can significantly affect the selectivity and activity of electrocatalytic carbon dioxide reduction (CO2RR). However, the thermodynamically favorable cathodic reduction to metallic states typically leads to catalytic deactivation. Herein, a defect construction strategy is employed to prepare crystalline/amorphous Cu2+1O/CuOx heterostructures (c/a-CuOx) with abundant Cu0 and Cuδ+ (0 < δ < 1) sites for CO2RR. The C2+ Faradaic efficiency of the heterostructured Cu catalyst is up to 81.3%, with partial current densities of 406.7 mA·cm−2. Significantly, real-time monitoring of the Cu oxidation state evolution by in-situ Raman spectroscopy confirms the stability of Cuδ+ species under long-term high current density operation. Density functional theory (DFT) calculations further reveal that the adjacent Cu0 and Cuδ+ sites in heterostructured c/a-CuOx can efficiently reduce the energy barrier of CO coupling for C2+ products.

Keywords: heterostructures, in-situ Raman, CO2 electroreduction, C–C coupling, manipulation of oxidation states

References(52)

[1]

Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.

[2]

Wang, J. J.; Zheng, X. R.; Wang, G. J.; Cao, Y. H.; Ding, W. L.; Zhang, J. F.; Wu, H.; Ding, J.; Hu, H. L.; Han, X. P. et al. Defective bimetallic selenides for selective CO2 electroreduction to CO. Adv. Mater. 2022, 34, 2106354.

[3]

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[4]

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

[5]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[6]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[7]

Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Dowell, N. M.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97.

[8]

Rodrigues, R. M.; Guan, X.; Iñiguez, J. A.; Estabrook, D. A.; Chapman, J. O.; Huang, S. Y.; Sletten, E. M.; Liu, C. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat. Catal. 2019, 2, 407–414.

[9]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[10]

De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D. H.; Gabardo, C.; Seifitokaldani, A.; Wang, X. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm−2. Science 2020, 367, 661–666.

[11]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[12]

Jouny, M.; Hutchings, G. S.; Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2019, 2, 1062–1070.

[13]

Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; de Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

[14]

Li, Y.; Shan, W. T.; Zachman, M. J.; Wang, M. Y.; Hwang, S.; Tabassum, H.; Yang, J.; Yang, X. X.; Karakalos, S.; Feng, Z. X. et al. Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: Mechanistic insight into active site structures. Angew. Chem., Int. Ed. 2022, 61, e202205632.

[15]

Wang, M. M.; Li, M.; Liu, Y. Q.; Zhang, C.; Pan, Y. Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO2 reduction. Nano Res. 2022, 15, 4925–4941.

[16]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[17]

Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.

[18]

Kim, J. Y.; Kim, G.; Won, H.; Gereige, I.; Jung, W. B.; Jung, H. T. Synergistic effect of Cu2O mesh pattern on high-facet Cu surface for selective CO2 electroreduction to ethanol. Adv. Mater. 2022, 34, 2106028.

[19]

Arán-Ais, R. M.; Scholten, F.; Kunze, S.; Rizo, R.; Roldan Cuenya, B. The role of in-situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 2020, 5, 317–325.

[20]

Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.

[21]

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

[22]

Wang, J. L.; Tan, H. Y.; Zhu, Y. P.; Chu, H.; Chen, H. M. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17254–17267.

[23]

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

[24]

Wu, Z. Z.; Gao, F. Y.; Gao, M. R. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 2021, 14, 1121–1139.

[25]

Liu, J. Z.; Cheng, L.; Wang, Y. T.; Chen, R. Z.; Xiao, C. Q.; Zhou, X. D.; Zhu, Y. H.; Li, Y. H.; Li, C. Z. Dynamic determination of Cu+ roles for CO2 reduction on electrochemically stable Cu2O-based nanocubes. J. Mater. Chem. A 2022, 10, 8459–8465.

[26]

Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

[27]

Zang, Y. P.; Liu, T. F.; Wei, P. F.; Li, H. F.; Wang, Q.; Wang, G. X.; Bao, X. H. Selective CO2 electroreduction to ethanol over a carbon-coated CuOx catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209629.

[28]

Martić, N.; Reller, C.; Macauley, C.; Löffler, M.; Schmid, B.; Reinisch, D.; Volkova, E.; Maltenberger, A.; Rucki, A.; Mayrhofer, K. J. J. et al. Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction. Adv. Energy Mater. 2019, 9, 1901228.

[29]

Wang, R.; Liu, J.; Huang, Q.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Partial coordination-perturbed Bi-copper sites for selective electroreduction of CO2 to hydrocarbons. Angew. Chem., Int. Ed. 2021, 60, 19829–19835.

[30]

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

[31]

Duan, G. Y.; Li, X. Q.; Ding, G. R.; Han, L. J.; Xu, B. H.; Zhang, S. J. Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0-CuI tandem catalyst. Angew. Chem., Int. Ed. 2022, 61, e202110657.

[32]

Li, H. F.; Liu, T. F.; Wei, P. F.; Lin, L.; Gao, D. F.; Wang, G. X.; Bao, X. H. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem., Int. Ed. 2021, 60, 14329–14333.

[33]

Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; Yang, P. P.; Liu, R.; Chi, L. P.; Wu, Z. Z.; Qin, S.; Yu, X. X.; Gao, M. R. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011–8021.

[34]

Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

[35]

Sun, R. B.; Gao, J. Y.; Wu, G.; Liu, P. G.; Guo, W. X.; Zhou, H.; Ge, J. J.; Hu, Y. M.; Xue, Z. G.; Li, H. et al. Amorphous metal oxide nanosheets featuring reversible structure transformations as sodium-ion battery anodes. Cell Rep. Phys. Sci. 2020, 1, 100118.

[36]

Chu, Y. T.; Guo, L. Y.; Xi, B. J.; Feng, Z. Y.; Wu, F. F.; Lin, Y.; Liu, J. C.; Sun, D.; Feng, J. K.; Qian, Y. T. et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv. Mat. 2018, 30, 1704244.

[37]

Chen, K. F.; Lo, S. C.; Chang, L.; Egerton, R.; Kai, J. J.; Lin, J. J.; Chen, F. R. Valence state map of iron oxide thin film obtained from electron spectroscopy imaging series. Micron 2007, 38, 354–361.

[38]

Tahir, D.; Tougaard, S. Electronic and optical properties of Cu, CuO, and Cu2O studied by electron spectroscopy. J. Phys. Condens. Matter 2012, 24, 175002.

[39]

Pauly, N.; Tougaard, S.; Yubero, F. LMM Auger primary excitation spectra of copper. Surf. Sci. 2014, 630, 294–299.

[40]

Tian, Y. H.; Liu, X. Z.; Xu, L.; Yuan, D.; Dou, Y. H.; Qiu, J. X.; Li, H. N.; Ma, J. M.; Wang, Y.; Su, D. et al. Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2101239.

[41]

Velasco-Vélez, J. J.; Jones, T.; Gao, D. F.; Carbonio, E.; Arrigo, R.; Hsu, C. J.; Huang, Y. C.; Dong, C. L.; Chen, J. M.; Lee, J. F. et al. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons. ACS Sustainable Chem. Eng. 2019, 7, 1485–1492.

[42]

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

[43]

Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 18704–18714.

[44]

Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. USA 2018, 115, E9261–E9270.

[45]

Jiang, Y. W.; Wang, X. Y.; Duan, D. L.; He, C. H.; Ma, J.; Zhang, W. Q.; Liu, H. J.; Long, R.; Li, Z. B.; Kong, T. T. et al. Structural reconstruction of Cu2O superparticles toward electrocatalytic CO2 reduction with high C2+ products selectivity. Adv. Sci. 2022, 9, 2105292.

[46]

Ross, M. B.; Dinh, C. T.; Li, Y. F.; Kim, D.; de Luna, P.; Sargent, E. H.; Yang, P. D. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J. Am. Chem. Soc. 2017, 139, 9359–9363.

[47]

Kim, Y.; Park, S.; Shin, S. J.; Choi, W.; Min, B. K.; Kim, H.; Kim, W.; Hwang, Y. J. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 2020, 13, 4301–4311.

[48]

Mudiyanselage, K.; Kim, H. Y.; Senanayake, S. D.; Baber, A. E.; Liu, P.; Stacchiola, D. Probing adsorption sites for CO on ceria. Phys. Chem. Chem. Phys. 2013, 15, 15856–15862.

[49]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[50]

Liu, X. Y.; Xiao, J. P.; Peng, H. J.; Hong, X.; Chan, K. R.; Nørskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.

[51]

Chan, K. R.; Tsai, C.; Hansen, H. A.; Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 2014, 6, 1899–1905.

[52]

Blyholder, G. Molecular orbital view of chemisorbed carbon monoxide. J. Phys. Chem. 1964, 68, 2772–2777.

File
12274_2022_5134_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 September 2022
Revised: 29 September 2022
Accepted: 01 October 2022
Published: 29 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0700104 and 2018YFA0702001), the National Natural Science Foundation of China (Nos. 21871238 and 22175163), the Fundamental Research Funds for the Central Universities (No. WK2060000016), and the Youth Innovation Promotion Association of the Chinese Academy of Science (No. 2018494). We thank the photoemission end stations (BL10B) in National Synchrotron Radiation Laboratory (NSRL) and BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF) for help in characterizations.

Return