AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Submit Manuscript
Show Outline
Show full outline
Hide outline
Show full outline
Hide outline
Research Article

Acid-stable antimonate based catalysts for the electrocatalytic oxygen evolution reaction

Xiaoping Gao1,2Huang Zhou2Zhe Wang3( )Gang Zhou4( )Jin Wang1( )Yuen Wu2( )
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Preservation Technology, Advanced Research Center, Hefei Hualing Co., Ltd, Hefei 230000, China
School of Science, Hubei University of Technology, Wuhan 430068, China
Show Author Information

Graphical Abstract

The Rh-NiSb2O6, Pt-CoSb2O6, Rh-FeSbO4, and Co-NiSb2O6 are screened out as promising oxygen evolution reaction electrocatalysts with good stability and high activity under acidic condition.


Acid-stable and highly active catalysts for the electrocatalytic oxygen evolution reaction (OER) are paramount to the advancement of electrochemical technologies for clean energy conversion and utilization. In this work, based on the density functional theory (DFT) calculations, we systematically investigated the MSb2O6 (M = Fe, Co, and Ni) and transition metal (TM) doped MSb2O6 (TM-MSb2O6, TM = Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ir, and Pt) as potential antimonate-based electrocatalysts for the OER. The stability and OER activity of these considered electrocatalysts were systematically studied under acidic conditions. It was found that Rh-NiSb2O6, Pt-CoSb2O6, Rh-FeSbO4, and Co-NiSb2O6 can serve as efficient and stable OER electrocatalysts, and their OER catalytic activities are better than that of the current state-of-the-art OER catalyst (IrO2). Our findings highlight a family of promising antimonate-based OER electrocatalysts for future experimental verification.

Electronic Supplementary Material

Download File(s)
12274_2022_5132_MOESM1_ESM.pdf (2.4 MB)



Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.


Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.


Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.


De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, eaav3506.


Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.


Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.


Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.


Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.


Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.


Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.


Wang, Z. B.; Guo, X. Y.; Montoya, J.; Nørskov, J. K. Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. npj Comput. Mater. 2020, 6, 160.


Singh, A. K.; Zhou, L.; Shinde, A.; Suram, S. K.; Montoya, J. H.; Winston, D.; Gregoire, J. M.; Persson, K. A. Electrochemical stability of metastable materials. Chem. Mater. 2017, 29, 10159–10167.


Gunasooriya, G. T. K. K.; Kreider, M. E.; Liu, Y. Z.; Zamora Zeledón, J. A.; Wang, Z. B.; Valle, E.; Yang, A. C.; Gallo, A.; Sinclair, R.; Stevens, M. B. et al. First-row transition metal antimonates for the oxygen reduction reaction. ACS Nano 2022, 16, 6334–6348.


Gunasooriya, G. T. K. K.; Nørskov, J. K. Analysis of acid-stable and active oxides for the oxygen evolution reaction. ACS Energy Lett. 2020, 5, 3778–3787.


Wang, Z. B.; Zheng, Y. R.; Chorkendorff, I.; Nørskov, J. K. Acid-stable oxides for oxygen electrocatalysis. ACS Energy Lett. 2020, 5, 2905–2908.


Evans, T. A.; Choi, K. S. Electrochemical synthesis and investigation of stoichiometric, phase-pure CoSb2O6 and MnSb2O6 electrodes for the oxygen evolution reaction in acidic media. ACS Appl. Energy Mater. 2020, 3, 5563–5571.


Moreno-Hernandez, I. A.; MacFarland, C. A.; Read, C. G.; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S. Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4. Energy Environ. Sci. 2017, 10, 2103–2108.


García-Mota, M.; Vojvodic, A.; Metiu, H.; Man, I. C.; Su, H. Y.; Rossmeisl, J.; Nørskov, J. K. Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2 (110) by transition-metal substitution. Chem Cat Chem 2011, 3, 1607–1611.


Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.


Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.


Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.


Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.


Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002.


Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.


Zhang, Z.; Yates, J. T. Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.


Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.


Matz, O.; Calatayud, M. Periodic DFT study of rutile IrO2: Surface reactivity and catechol adsorption. J. Phys. Chem. C 2017, 121, 13135–13143.


Back, S.; Tran, K.; Ulissi, Z. W. Discovery of acid-stable oxygen evolution catalysts: High-throughput computational screening of equimolar bimetallic oxides. ACS Appl. Mater. Interfaces 2020, 12, 38256–38265.


Gao, X. P.; Zhou, Y. N.; Cheng, Z. W.; Tan, Y. J.; Liu, S. Q.; Shen, Z. M. Doping sp-hybridized B atoms in graphyne supported single cobalt atoms for hydrogen evolution electrocatalysis. Int. J. Hydrogen Energy 2019, 44, 27421–27428.


Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.


Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.


Wohlfahrt-Mehrens, M.; Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 1987, 237, 251–260.


Fang, Y. H.; Liu, Z. P. Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J. Am. Chem. Soc. 2010, 132, 18214–18222.


Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.


Hao, S. Y.; Liu, M.; Pan, J. J.; Liu, X. N.; Tan, X. L.; Xu, N.; He, Y.; Lei, L. C.; Zhang, X. W. Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 2020, 11, 5368.


Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.


Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem Cat Chem 2011, 3, 1159–1165.


Gao, X. P.; Zhou, Y. N.; Tan, Y. J.; Liu, S. Q.; Cheng, Z. W.; Shen, Z. M. Graphyne doped with transition-metal single atoms as effective bifunctional electrocatalysts for water splitting. Appl. Surf. Sci. 2019, 492, 8–15.


Back, S.; Tran, K.; Ulissi, Z. W. Toward a design of active oxygen evolution catalysts: Insights from automated density functional theory calculations and machine learning. ACS Catal. 2019, 9, 7651–7659.


Zhou, Y. N.; Chen, L. L.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Res. 2022, 15, 7994–8000.


Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.


Dickens, C. F.; Kirk, C.; Nørskov, J. K. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: Beyond the limiting potential volcano. J. Phys. Chem. C 2019, 123, 18960–18977.


Zhou, Y. N.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Improving the activity of electrocatalysts toward the hydrogen evolution reaction, the oxygen evolution reaction, and the oxygen reduction reaction via modification of metal and ligand of conductive two-dimensional metal-organic frameworks. J. Phys. Chem. Lett. 2021, 12, 11652–11658.


Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.


Wei, B.; Fu, Z. H.; Legut, D.; Germann, T. C.; Du, S. Y.; Zhang, H. J.; Francisco, J. S.; Zhang, R. F. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater. 2021, 33, 2102595.

Nano Research
Pages 4691-4697
Cite this article:
Gao X, Zhou H, Wang Z, et al. Acid-stable antimonate based catalysts for the electrocatalytic oxygen evolution reaction. Nano Research, 2023, 16(4): 4691-4697.






Web of Science






Received: 12 September 2022
Revised: 30 September 2022
Accepted: 01 October 2022
Published: 29 November 2022
© Tsinghua University Press 2022