Journal Home > Volume 16 , Issue 4

Single-atom catalyst (SAC) is one of the newest catalysts, and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability. We designed and synthesized a Fe-N decorated graphene nanosheet (Fe-N5/GN SAC) with the coordination number of five. Through enzymology and theoretical calculations, the Fe-N5/GN SAC has outstanding intrinsic peroxidase-like catalytic activity due to single-atom Fe site with five-N-coordination structure. We explored its potential on lung cancer therapy, and found that it could kill human lung adenocarcinoma cells (A549) by decomposing hydrogen peroxide (H2O2) into toxic reactive oxygen species (ROS) under acidic microenvironment in three-dimensional (3D) lung cancer cell model. Our study demonstrates a promising application of SAC with highly efficient single-atom catalytic sites for cancer treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A peroxidase-like single-atom Fe-N5 active site for effective killing human lung adenocarcinoma cells

Show Author's information Liye Zhu1Hong Zhong2Dan Du2Tao Li4,5Hoai Nguyen6Scott P. Beckman2Wentao Xu1Jin-Cheng Li3( )Nan Cheng1( )Yuehe Lin2( )
Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL 60115, USA
X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA
Material Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439, USA

Abstract

Single-atom catalyst (SAC) is one of the newest catalysts, and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability. We designed and synthesized a Fe-N decorated graphene nanosheet (Fe-N5/GN SAC) with the coordination number of five. Through enzymology and theoretical calculations, the Fe-N5/GN SAC has outstanding intrinsic peroxidase-like catalytic activity due to single-atom Fe site with five-N-coordination structure. We explored its potential on lung cancer therapy, and found that it could kill human lung adenocarcinoma cells (A549) by decomposing hydrogen peroxide (H2O2) into toxic reactive oxygen species (ROS) under acidic microenvironment in three-dimensional (3D) lung cancer cell model. Our study demonstrates a promising application of SAC with highly efficient single-atom catalytic sites for cancer treatment.

Keywords: single-atom catalyst, cancer therapy, peroxidase-like catalytic activity, three-dimensional (3D), cancer cell model

References(55)

[1]

Thai, A. A.; Solomon, B. J.; Sequist, L. V.; Gainor, J. F.; Heist, R. S. Lung cancer. Lancet 2021, 398, 535–554.

[2]

Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 12624–12631.

[3]

Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

[4]

Jiao, L.; Xu, W. Q.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765.

[5]

Wang, X. W.; Fan, L. X.; Cheng, L.; Sun, Y. B.; Wang, X. Y.; Zhong, X. Y.; Shi, Q. Q.; Gong, F.; Yang, Y.; Ma, Y. et al. Biodegradable nickel disulfide nanozymes with GSH-depleting function for high-efficiency photothermal-catalytic antibacterial therapy. iScience 2020, 23, 101281.

[6]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[7]

Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

[8]

Luo, Y. N.; Song, Y.; Wang, M. M.; Jian, T. Y.; Ding, S. C.; Mu, P.; Liao, Z. H.; Shi, Q. R.; Cai, X. L.; Jin, H. B. et al. Bioinspired peptoid nanotubes for targeted tumor cell imaging and chemo-photodynamic therapy. Small 2019, 15, e1902485.

[9]

Zhou, X. T.; You, M.; Wang, F. H.; Wang, Z. Z.; Gao, X. F.; Jing, C.; Liu, J. M.; Guo, M. Y.; Li, J. Y.; Luo, A. P. et al. Multifunctional graphdiyne-cerium oxide nanozymes facilitate microRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv. Mater. 2021, 33, e2100556.

[10]

Ning, S. P.; Zheng, Y.; Qiao, K.; Li, G. Z.; Bai, Q.; Xu, S. P. Laser-triggered combination therapy by iron sulfide-doxorubicin@functionalized nanozymes for breast cancer therapy. J. Nanobiotechnol. 2021, 19, 344.

[11]

Cai, X. L.; Wang, M. M.; Mu, P.; Jian, T. Y.; Liu, D.; Ding, S. C.; Luo, Y. N.; Du, D.; Song, Y.; Chen, C. L. et al. Sequence-defined nanotubes assembled from IR780-conjugated peptoids for chemophototherapy of malignant glioma. Research 2021, 2021, 9861384.

[12]

Shen, L. H.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021, 93, 1221–1231.

[13]

Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

[14]

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

[15]

Xu, B.; Cui, Y.; Wang, W.; Li, S.; Lyu, C.; Wang, S.; Bao, W.; Wang, H.; Qin, M.; Liu, Z.; Wei, W.; Liu, H. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv. Mater. 2020, 32, e2003563.

[16]

Lyu, Z.; Ding, S.; Tieu, P.; Fang, L.; Li, X.; Li, T.; Pan, X.; Engelhard, M. H.; Ruan, X.; Du, D.; Li, S.; Lin, Y. Single-atomic site catalyst enhanced lateral flow immunoassay for point-of-care detection of herbicide. Research (Washington, D.C.). 2022, 2022, 9823290.

[17]

Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-NX moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.

[18]

Fu, S. F.; Zhu, C. Z.; Su, D.; Song, J. H.; Yao, S. Y.; Feng, S.; Engelhard, M. H.; Du, D.; Lin, Y. H. Porous carbon-hosted atomically dispersed iron-nitrogen moiety as enhanced electrocatalysts for oxygen reduction reaction in a wide range of pH. Small 2018, 14, 1703118.

[19]
Koledova, Z. 3D cell culture: An introduction. In 3D Cell Culture. Koledova, Z. , Ed.; Springer: New York, 2017; pp 1–11.
[20]

Ravi, M.; Paramesh, V.; Kaviya, S. R.; Anuradha, E.; Solomon, F. D. P. 3D cell culture systems: Advantages and applications. J. Cell. Physiol. 2015, 230, 16–26.

[21]

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNX active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

[22]
Li, J. C.; Yang, Z. Q.; Tang, D. M.; Zhang, L. L.; Hou, P. X.; Zhao, S. Y.; Liu, C.; Cheng, M.; Li, G. X.; Zhang, F. et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater. 2018, 10, e461.
[23]

Li, J. C.; Xiao, F.; Zhong, H.; Li, T.; Xu, M. J.; Ma, L.; Cheng, M.; Liu, D.; Feng, S.; Shi, Q. R. et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction. ACS Catal. 2019, 9, 5929–5934.

[24]

Li, J. C.; Hou, P. X.; Zhao, S. Y.; Liu, C.; Tang, D. M.; Cheng, M.; Zhang, F.; Cheng, H. M. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions. Energy Environ. Sci. 2016, 9, 3079–3084.

[25]

Li, J. C.; Meng, Y.; Zhang, L. L.; Li, G. Z.; Shi, Z. C.; Hou, P. X.; Liu, C.; Cheng, H. M.; Shao, M. H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2103360.

[26]

Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

[27]

Zhu, C. Z.; Fu, S. F.; Song, J. H.; Shi, Q. R.; Su, D.; Engelhard, M. H.; Li, X. L.; Xiao, D. D.; Li, D.; Estevez, L. et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407.

[28]

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

[29]

Ahmed, Y.; Yaakob, Z.; Akhtar, P. Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal. Sci. Technol. 2016, 6, 1222–1232.

[30]

Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.

[31]

Herget, K.; Hubach, P.; Pusch, S.; Deglmann, P.; Götz, H.; Gorelik, T. E.; Gural'skiy, I. A.; Pfitzner, F.; Link, T.; Schenk, S. et al. Haloperoxidase mimicry by CeO2−X nanorods combats biofouling. Adv. Mater. 2017, 29, 1603823.

[32]

Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

[33]

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

[34]

Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2019, 29, 1906174.

[35]

Jing, X. M.; Yang, F. M.; Shao, C. C.; Wei, K.; Xie, M. Y.; Shen, H.; Shu, Y. Q. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer. 2019, 18, 157.

[36]

Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M. E. Oxidative stress and cancer: An overview. Ageing Res. Rev. 2013, 12, 376–390.

[37]

Kovacic, P.; Jacintho, J. D. Mechanisms of carcinogenesis focus on oxidative stress and electron transfer. Curr. Med. Chem. 2001, 8, 773–796.

[38]

Wu, Z. M.; Wang, H. G.; Fang, S. Y.; Xu, C. Y. Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells. Mol. Med. Rep. 2018, 18, 4163–4174.

[39]

Cui, L.; Bu, W. Q.; Song, J.; Feng, L.; Xu, T. T.; Liu, D.; Ding, W. B.; Wang, J. H.; Li, C. Y.; Ma, B. G. et al. Apoptosis induction by alantolactone in breast cancer MDA-MB-231 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. Arch. Pharm. Res. 2018, 41, 299–313.

[40]

Kaminskyy, V. O.; Zhivotovsky, B. Free radicals in cross talk between autophagy and apoptosis. Antioxid. Redox Signal. 2014, 21, 86–102.

[41]
Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R. L.; Cepero, E.; Boise, L. H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32.
[42]

Linder, M.; Tschernig, T. Vasculogenic mimicry: Possible role of effector caspase-3, caspase-6 and caspase-7. Ann. Anat. 2016, 204, 114–117.

[43]

Rodríguez-González, J.; Wilkins-Rodríguez, A. A.; Gutiérrez-Kobeh, L. Role of glutathione, ROS, and Bcl-xL in the inhibition of apoptosis of monocyte-derived dendritic cells by Leishmania mexicana promastigotes. Parasitol. Res. 2018, 117, 1225–1235.

[44]

Li, J.-C.; Zhong, H.; Xu, M.; Li, T.; Wang, L.; Shi, Q.; Feng, S.; Lyu, Z.; Liu, D.; Du, D.; Beckman, S. P.; Pan, X.; Lin, Y.; Shao, M. Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Science China Materials. 2020, 63, 965–971.

[45]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[46]

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

[47]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[48]

Perkinson, J. C.; Swenson, J. M.; DeMasi, A.; Wagenbach, C.; Ludwig, K. F.; Norris, S. A.; Aziz, M. J. Sawtooth structure formation under nonlinear-regime ion bombardment. J. Phys. Condens. Matter. 2018, 30, 294004.

[49]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[50]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[51]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[52]

Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 14871–14876.

[53]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[54]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[55]

Zhu, L. Y.; Wang, H. M.; Yuhan, J.; Zhang, B. Y.; Li, H. Y.; Asakiya, C.; Huang, K. L.; He, X. Y.; Xu, W. T. Exosomes mediated the delivery of ochratoxin A-induced cytotoxicity in HEK293 cells. Toxicology 2021, 461, 152926.

File
12274_2022_5127_MOESM1_ESM.pdf (495.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2022
Revised: 28 September 2022
Accepted: 30 September 2022
Published: 23 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

N. C. would like to acknowledge the support the 2115 Talent Development Program of China Agricultural University. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Return