Journal Home > Volume 16 , Issue 4

The full E-field control of multiferroic interfacial magnetism is a long-standing challenge for micro-electromechanical systems (MEMS) and has the potential to transform electronics operation mechanisms. When scaling down conventional complementary metal-oxide semiconductor (CMOS) devices, increased heating dissipation becomes a top concern. Combining the highly correlated ferroic orders, notably the strongly coupled interfacial magnetoelectric (ME) interactions, may lead to devices beyond CMOS. These devices use the electric field to regulate magnetization, which opens up the prospect of downsizing, improved performance, and lower power consumption. To broadly survey this tremendous scope within the last five years, this review summarizes advances in voltage control of interfacial magnetism (VCIM) with various material system selection; controlling effects with different gating methods are also explored. Five classic mechanisms are demonstrated: strain, exchange bias, orbital reconstruction, and the electrostatic and electrochemical. The encouraging photovoltaic approach is also discussed. Each method’s capabilities and application scenarios are compared. Analyses of the comprehensive gating results of different magnetic coupling effects such as perpendicular magnetic anisotropy (PMA) and Ruderman–Kittel–Kasuya–Yosida (RKKY) are additionally made. At last, controlling of skyrmions and two-dimensional (2D) material magnetization is summarized, indicating that E-field gating offers a universal approach with few limitations for material selection. These results point to potential for E-field control interfacial magnetism and predict significant future advancements for spintronics.


menu
Abstract
Full text
Outline
About this article

Recent development of E-field control of interfacial magnetism in multiferroic heterostructures

Show Author's information Yuxin ChengShishun ZhaoZiyao Zhou( )Ming Liu( )
The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

The full E-field control of multiferroic interfacial magnetism is a long-standing challenge for micro-electromechanical systems (MEMS) and has the potential to transform electronics operation mechanisms. When scaling down conventional complementary metal-oxide semiconductor (CMOS) devices, increased heating dissipation becomes a top concern. Combining the highly correlated ferroic orders, notably the strongly coupled interfacial magnetoelectric (ME) interactions, may lead to devices beyond CMOS. These devices use the electric field to regulate magnetization, which opens up the prospect of downsizing, improved performance, and lower power consumption. To broadly survey this tremendous scope within the last five years, this review summarizes advances in voltage control of interfacial magnetism (VCIM) with various material system selection; controlling effects with different gating methods are also explored. Five classic mechanisms are demonstrated: strain, exchange bias, orbital reconstruction, and the electrostatic and electrochemical. The encouraging photovoltaic approach is also discussed. Each method’s capabilities and application scenarios are compared. Analyses of the comprehensive gating results of different magnetic coupling effects such as perpendicular magnetic anisotropy (PMA) and Ruderman–Kittel–Kasuya–Yosida (RKKY) are additionally made. At last, controlling of skyrmions and two-dimensional (2D) material magnetization is summarized, indicating that E-field gating offers a universal approach with few limitations for material selection. These results point to potential for E-field control interfacial magnetism and predict significant future advancements for spintronics.

Keywords: multiferroic, strain, photovoltaic, magnetoelectric coupling, charge

References(278)

[1]

Barthélémy, A.; Fert, A.; Baibich, M. N.; Hadjoudj, S.; Petroff, F.; Etienne, P.; Cabanel, R.; Lequien, S.; Nguyen Van Dau, F.; Creuzet, G. Magnetic and transport properties of Fe/Cr superlattices. J. Appl. Phys. 1990, 67, 5908–5913.

[2]

Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475.

[3]

Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

[4]

Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7.

[5]

Ralph, D. C.; Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 2008, 320, 1190–1216.

[6]

Guo, Z. X.; Yin, J. L.; Bai, Y.; Zhu, D. Q.; Shi, K. W.; Wang, G. F.; Cao, K. H.; Zhao, W. S. Spintronics for energy-efficient computing: An overview and outlook. Proc. IEEE 2021, 109, 1398–1417.

[7]

Peng, S. Z.; Zhu, D. Q.; Zhou, J. Q.; Zhang, B. Y.; Cao, A. N.; Wang, M. X.; Cai, W. L.; Cao, K. H.; Zhao, W. S. Modulation of heavy metal/ferromagnetic metal interface for high-performance spintronic devices. Adv. Electron. Mater. 2019, 5, 1900134.

[8]

Yang, H.; Valenzuela, S. O.; Chshiev, M.; Couet, S.; Dieny, B.; Dlubak, B.; Fert, A.; Garello, K.; Jamet, M.; Jeong, D.-E. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 2022, 606, 663–673.

[9]

Wang, M. X.; Cai, W. L.; Zhu, D. Q.; Wang, Z. H.; Kan, J.; Zhao, Z. Y.; Cao, K. H.; Wang, Z. L.; Zhang, Y. G.; Zhang, T. R. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin-orbit and spin-transfer torques. Nat. Electron. 2018, 1, 582–588.

[10]

Kroemer, H. Quasi-electric fields and band offsets: Teaching electrons new tricks. ChemPhysChem, 2001, 2, 490–449.

[11]

Kroemer, H. Nobel lecture: Quasielectric fields and band offsets: Teaching electrons new tricks. Rev. Mod. Phys. 2001, 73, 783–793.

[12]

Pothuizen, J. J. M.; Cohen, O.; Sawatzky, G. A. Surface band gaps and superexchange interaction in transition metal oxides. MRS Online Proc. Library 1995, 401, 501–505.

[13]

Marynowski, M.; Franzen, W.; El-Batanouny, M.; Staemmler, V. Observation of an extraordinary antiferromagnetic transition on the NiO(100) surface by metastable helium atom diffraction. Phys. Rev. B 1999, 60, 6053–6067.

[14]

Bader, S. D.; Parkin, S. S. P. Spintronics. Annu. Rev. Condens. Matter Phys. 2010, 1, 71–88.

[15]

Brataas, A.; Kent, A. D.; Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 2012, 11, 372–381.

[16]

Garcia, V.; Bibes, M.; Barthélémy, A. Artificial multiferroic heterostructures for an electric control of magnetic properties. C. R. Phys. 2015, 16, 168–181.

[17]

Heron, J. T.; Schlom, D. G.; Ramesh, R. Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 2014, 1, 021303.

[18]

Fusil, S.; Garcia, V.; Barthélémy, A.; Bibes, M. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 2014, 44, 91–116.

[19]

Ramesh, R. Electric field control of ferromagnetism using multi-ferroics: The bismuth ferrite story. Philos. Trans. Roy. Soc. A:Math. Phys. Eng. Sci. 2014, 372, 20120437.

[20]

Liu, M.; Sun, N. X. Voltage control of magnetism in multiferroic heterostructures. Philos. Trans. Roy. Soc. A:Math. Phys. Eng. Sci. 2014, 372, 20120439.

[21]

Hu, J. M.; Shu, L.; Li, Z.; Gao, Y.; Shen, Y.; Lin, Y. H.; Chen, L. Q.; Nan, C. W. Film size-dependent voltage-modulated magnetism in multiferroic heterostructures. Philos. Trans. Roy. Soc. A:Math. Phys. Eng. Sci. 2014, 372, 20120444.

[22]

Vaz, C. A. F.; Staub, U. Artificial multiferroic heterostructures. J. Mater. Chem. C 2013, 1, 6731–6742.

[23]

Bibes, M. Nanoferronics is a winning combination. Nat. Mater. 2012, 11, 354–357.

[24]

Sun, N. X.; Srinivasan, G. Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 2012, 2, 1240004.

[25]

Vaz, C. A. F. Electric field control of magnetism in multiferroic heterostructures. J. Phys. :Condens. Matter 2012, 24, 333201.

[26]

Velev, J. P.; Jaswal, S. S.; Tsymbal, E. Y. Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. Roy. Soc. A:Math. Phys. Eng. Sci. 2011, 369, 3069–3097.

[27]

Ma, J.; Hu, J. M.; Li, Z.; Nan, C. W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 2011, 23, 1062–1087.

[28]

Vaz, C. A. F.; Hoffman, J.; Ahn, C. H.; Ramesh, R. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 2010, 22, 2900–2918.

[29]

Srinivasan, G. Magnetoelectric composites. Annu. Rev. Mater. Res. 2010, 40, 153–178.

[30]

Wang, Y.; Hu, J. M.; Lin, Y. H.; Nan, C. W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2010, 2, 61–68.

[31]

Nan, C. W.; Bichurin, M. I.; Dong, S. X.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101.

[32]

Ramesh, R.; Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29.

[33]

Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765.

[34]

Liu, G.; Nan, C. W.; Xu, Z. K.; Chen, H. Coupling interaction in multiferroic BaTiO3-CoFe2O4 nanostructures. J. Phys. D:Appl. Phys. 2005, 38, 2321.

[35]

Song, C.; Cui, B.; Li, F.; Zhou, X. J.; Pan, F. Recent progress in voltage control of magnetism: Materials, mechanisms, and performance. Prog. Mater. Sci. 2017, 87, 33–82.

[36]

Pradhan, D. K.; Kumari, S.; Rack, P. D. Magnetoelectric composites: Applications, coupling mechanisms, and future directions. Nanomaterials 2020, 10, 2072.

[37]

Li, H.; Lin, C. C.; Nikonov, D. E.; Young, I. A. Differential electrically insulated magnetoelectric spin–orbit logic circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 2021, 7, 18–25.

[38]

Gao, J. Q.; Jiang, Z. K.; Zhang, S. J.; Mao, Z. N.; Shen, Y.; Chu, Z. Q. Review of magnetoelectric sensors. Actuators 2021, 10, 109.

[39]

Kumar, M.; Shankar, S.; Kumar, A.; Anshul, A.; Jayasimhadri, M.; Thakur, O. P. Progress in multiferroic and magnetoelectric materials: Applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 2020, 31, 19487–19510.

[40]

Liang, X. F.; Dong, C. Z.; Chen, H. H.; Wang, J. W.; Wei, Y. Y.; Zaeimbashi, M.; He, Y. F.; Matyushov, A.; Sun, C. X.; Sun, N. X. A review of thin-film magnetoelastic materials for magnetoelectric applications. Sensors 2020, 20, 1532.

[41]

Manipatruni, S.; Nikonov, D. E.; Lin, C. C.; Gosavi, T. A.; Liu, H. C.; Prasad, B.; Huang, Y. L.; Bonturim, E.; Ramesh, R.; Young, I. A. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 2019, 565, 35–42.

[42]

Cortie, D. L.; Causer, G. L.; Rule, K. C.; Fritzsche, H.; Kreuzpaintner, W.; Klose, F. Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater. 2020, 30, 1901414.

[43]

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

[44]

Kim, S. K.; Beach, G. S. D.; Lee, K. J.; Ono, T.; Rasing, T.; Yang, H. Ferrimagnetic spintronics. Nat. Mater. 2022, 21, 24–34.

[45]

He, Q. L.; Hughes, T. L.; Armitage, N. P.; Tokura, Y.; Wang, K. L. Topological spintronics and magnetoelectronics. Nat. Mater. 2022, 21, 15–23.

[46]

Tokura, Y.; Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 2021, 121, 2857–2897.

[47]

Slutsker, J.; Levin, I.; Li, J. H.; Artemev, A.; Roytburd, A. L. Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 2006, 73, 184127.

[48]

Zheng, H.; Straub, F.; Zhan, Q.; Yang, P. L.; Hsieh, W. K.; Zavaliche, F.; Chu, Y. H.; Dahmen, U.; Ramesh, R. Self-assembled growth of BiFeO3-CoFe2O4 nanostructures. Adv. Mater. 2006, 18, 2747–2752.

[49]

Levin, I.; Li, J.; Slutsker, J.; Roytburd, A. L. Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 2006, 18, 2044–2047.

[50]

Zheng, H.; Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 2004, 303, 661–663.

[51]

Wang, Z. G.; Viswan, R.; Hu, B. L.; Li, J. F.; Harris, V. G.; Viehland, D. Domain rotation induced strain effect on the magnetic and magneto-electric response in CoFe2O4/Pb(Mg, Nb)O3-PbTiO3 heterostructures. J. Appl. Phys. 2012, 111, 034108.

[52]

Hockel, J. L.; Bur, A.; Wu, T.; Wetzlar, K. P.; Carman, G. P. Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](1-0.32)-[PbTiO3]0. 32 heterostructures. Appl. Phys. Lett. 2012, 100, 022401.

[53]

Hockel, J. L.; Pollard, S. D.; Wetzlar, K. P.; Wu, T.; Zhu, Y.; Carman, G. P. Electrically controlled reversible and hysteretic magnetic domain evolution in nickel film/Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0. 32(011) heterostructure. Appl. Phys. Lett. 2013, 102, 242901.

[54]

Hsu, C. J.; Hockel, J. L.; Carman, G. P. Magnetoelectric manipulation of domain wall configuration in thin film Ni/[Pb(Mn1/3Nb2/3)O3]0.68-[PbTiO3]0. 32(001) heterostructure. Appl. Phys. Lett. 2012, 100, 092902.

[55]

Buzzi, M.; Chopdekar, R. V.; Hockel, J. L.; Bur, A.; Wu, T.; Pilet, N.; Warnicke, P.; Carman, G. P.; Heyderman, L. J.; Nolting, F. Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Phys. Rev. Lett. 2013, 111, 027204.

[56]

Liu, M.; Howe, B. M.; Grazulis, L.; Mahalingam, K.; Nan, T. X.; Sun, N. X.; Brown, G. J. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 2013, 25, 4886–4892.

[57]

Fackler, S. W.; Donahue, M. J.; Gao, T. R.; Nero, P. N. A.; Cheong, S. W.; Cumings, J.; Takeuchi, I. Local control of magnetic anisotropy in transcritical permalloy thin films using ferroelectric BaTiO3 domains. Appl. Phys. Lett. 2014, 105, 212905.

[58]

Chopdekar, R. V.; Malik, V. K.; Rodríguez, A. F.; Le Guyader, L.; Takamura, Y.; Scholl, A.; Stender, D.; Schneider, C. W.; Bernhard, C.; Nolting, F. et al. Spatially resolved strain-imprinted magnetic states in an artificial multiferroic. Phys. Rev. B 2012, 86, 014408.

[59]

Lahtinen, T. H.; Shirahata, Y.; Yao, L. D.; Franke, K. J. A.; Venkataiah, G.; Taniyama, T.; Van Dijken, S. Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO3. Appl. Phys. Lett. 2012, 101, 262405.

[60]

Geprägs, S.; Mannix, D.; Opel, M.; Goennenwein, S. T. B.; Gross, R. Converse magnetoelectric effects in Fe3O4/BaTiO3 multiferroic hybrids. Phys. Rev. B 2013, 88, 054412.

[61]

Streubel, R.; Köhler, D.; Schäfer, R.; Eng, L. M. Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures. Phys. Rev. B 2013, 87, 054410.

[62]

Maruyama, T.; Shiota, Y.; Nozaki, T.; Ohta, K.; Toda, N.; Mizuguchi, M.; Tulapurkar, A. A.; Shinjo, T.; Shiraishi, M.; Mizukami, S. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 2009, 4, 158–161.

[63]

Duan, C. G.; Jaswal, S. S.; Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 2006, 97, 047201.

[64]

Cai, T. Y.; Ju, S.; Lee, J.; Sai, N.; Demkov, A. A.; Niu, Q.; Li, Z. Y.; Shi, J. R.; Wang, E. G. Magnetoelectric coupling and electric control of magnetization in ferromagnet/ferroelectric/normal-metal superlattices. Phys. Rev. B 2009, 80, 140415.

[65]

Molegraaf, H. J. A.; Hoffman, J.; Vaz, C. A. F.; Gariglio, S.; Van Der Marel, D.; Ahn, C. H.; Triscone, J. M. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 2009, 21, 3470–3474.

[66]

Wu, S. M.; Cybart, S. A.; Yu, P.; Rossell, M. D.; Zhang, J. X.; Ramesh, R.; Dynes, R. C. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 2010, 9, 756–761.

[67]

Béa, H.; Bibes, M.; Ott, F.; Dupé, B.; Zhu, X. H.; Petit, S.; Fusil, S.; Deranlot, C.; Bouzehouane, K.; Barthélémy, A. Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 2008, 100, 017204.

[68]

Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; Gajek, M.; Han, S. J.; He, Q.; Balke, N.; Yang, C. H.; Lee, D.; Hu, W. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 2008, 7, 478–482.

[69]

Liu, M.; Obi, O.; Lou, J.; Chen, Y. J.; Cai, Z. H.; Stoute, S.; Espanol, M.; Lew, M.; Situ, X. D.; Ziemer, K. S. et al. Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 2009, 19, 1826–1831.

[70]

Hu, J. M.; Chen, L. Q.; Nan, C. W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 2016, 28, 15–39.

[71]

Wang, Y. D.; Mehmood, N.; Hou, Z. P.; Mi, W. B.; Zhou, G. F.; Gao, X. S.; Liu, J. M. Electric field-driven rotation of magnetic vortex originating from magnetic anisotropy reorientation. Adv. Electron. Mater. 2022, 8, 2100561.

[72]

Lai, Z. X.; Li, C. L.; Li, Z. R.; Liu, X.; Zhou, Z. Y.; Mi, W. B.; Liu, M. Electric field-tailored giant transformation of magnetic anisotropy and interfacial spin coupling in epitaxial γ′-Fe4N/Pb(Mg1/3Nb2/3)0.7Ti0. 3O3(011) multiferroic heterostructures. J. Mater. Chem. C 2019, 7, 8537–8545.

[73]

Zhou, Z. Y.; Howe, B. M.; Liu, M.; Nan, T. X.; Chen, X.; Mahalingam, K.; Sun, N. X.; Brown, G. J. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0. 7/Ba0. 6Sr0. 4TiO3/Nb:SrTiO3 multiferroic heterostructures. Sci. Rep. 2015, 5, 7740.

[74]

Nan, T. X.; Zhou, Z. Y.; Liu, M.; Yang, X.; Gao, Y.; Assaf, B. A.; Lin, H.; Velu, S.; Wang, X. J.; Luo, H. S. et al. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin permalloy/PMN-PT interface. Sci. Rep. 2014, 4, 3688.

[75]

Zhang, S.; Zhao, Y. G.; Li, P. S.; Yang, J. J.; Rizwan, S.; Zhang, J. X.; Seidel, J.; Qu, T. L.; Yang, Y. J.; Luo, Z. L. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0. 3O3 structure at room temperature. Phys. Rev. Lett. 2012, 108, 137203.

[76]

Heron, J. T.; Bosse, J. L.; He, Q.; Gao, Y.; Trassin, M.; Ye, L.; Clarkson, J. D.; Wang, C.; Liu, J.; Salahuddin, S. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 2014, 516, 370–373.

[77]

Liu, M.; Hoffman, J.; Wang, J.; Zhang, J. X.; Nelson-Cheeseman, B.; Bhattacharya, A. Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT(011). Sci. Rep. 2013, 3, 1876.

[78]

Brandlmaier, A.; Geprägs, S.; Woltersdorf, G.; Gross, R.; Goennenwein, S. T. B. Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids. J. Appl. Phys. 2011, 110, 043913.

[79]

Tkach, A.; Kehlberger, A.; Büttner, F.; Jakob, G.; Eisebitt, S.; Kläui, M. Electric field modification of magnetotransport in Ni thin films on (011)PMN-PT piezosubstrates. Appl. Phys. Lett. 2015, 106, 062404.

[80]

Gao, Y.; Hu, J. M.; Shu, L.; Nan, C. W. Strain-mediated voltage control of magnetism in multiferroic Ni77Fe23/Pb(Mg1/3Nb2/3)0.7Ti0. 3O3 heterostructure. Appl. Phys. Lett. 2014, 104, 142908.

[81]

Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y. H.; Salahuddin, S.; Ramesh, R. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 2011, 107, 217202.

[82]

Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy. Sci. Rep. 2016, 6, 27774.

[83]

Ghidini, M.; Pellicelli, R.; Prieto, J. L.; Moya, X.; Soussi, J.; Briscoe, J.; Dunn, S.; Mathur, N. D. Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat. Commun. 2013, 4, 1453.

[84]

Yang, S. H.; Ryu, K. S.; Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 2015, 10, 221–226.

[85]

Hu, J. M.; Yang, T. N.; Wang, J. J.; Huang, H. B.; Zhang, J. X.; Chen, L. Q.; Nan, C. W. Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 2015, 15, 616–622.

[86]

Chiba, D.; Kawaguchi, M.; Fukami, S.; Ishiwata, N.; Shimamura, K.; Kobayashi, K.; Ono, T. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nat. Commun. 2012, 3, 888.

[87]

Li, P.; Liu, T.; Chang, H. C.; Kalitsov, A.; Zhang, W.; Csaba, G.; Li, W.; Richardson, D.; DeMann, A.; Rimal, G. et al. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nat. Commun. 2016, 7, 12688.

[88]

Wang, W. G.; Li, M. G.; Hageman, S.; Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 2012, 11, 64–68.

[89]

Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H. D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724.

[90]

Miron, I. M.; Garello, K.; Gaudin, G.; Zermatten, P. J.; Costache, M. V.; Auffret, S.; Bandiera, S.; Rodmacq, B.; Schuhl, A.; Gambardella, P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 2011, 476, 189–193.

[91]

Peng, B.; Zhou, Z. Y.; Nan, T. X.; Dong, G. H.; Feng, M. M.; Yang, Q.; Wang, X. J.; Zhao, S. S.; Xian, D.; Jiang, Z. D. et al. Deterministic switching of perpendicular magnetic anisotropy by voltage control of spin reorientation transition in (Co/Pt)3/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures. ACS Nano 2017, 11, 4337–4345.

[92]
Wang, X. J.; Yang, Q.; Wang, L.; Zhou, Z. Y.; Min, T.; Liu, M.; Sun, N. X. E-field control of the RKKY interaction in FeCoB/Ru/FeCoB/PMN-PT(011) multiferroic heterostructures. Adv. Mater. 2018, 30, 1803612.
[93]

Yi, M.; Xu, B. X.; Müller, R.; Gross, D. Strain-mediated magnetoelectric effect for the electric-field control of magnetic states in nanomagnets. Acta Mech. 2019, 230, 1247–1256.

[94]

Xiao, Z. Y.; Lo Conte, R.; Chen, C.; Liang, C. Y.; Sepulveda, A.; Bokor, J.; Carman, G. P.; Candler, R. N. Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion. Sci. Rep. 2018, 8, 5207.

[95]

Nan, T. X.; Hu, J. M.; Dai, M. Y.; Emori, S.; Wang, X. J.; Hu, Z. Q.; Matyushov, A.; Chen, L. Q.; Sun, N. A strain-mediated magnetoelectric-spin-torque hybrid structure. Adv. Funct. Mater. 2019, 29, 1806371.

[96]

Gorige, V.; Kati, R.; Yoon, D. H.; Kumar, P. S. A. Strain mediated magnetoelectric coupling in a NiFe2O4-BaTiO3 multiferroic composite. J. Phys. D:Appl. Phys. 2016, 49, 405001.

[97]

Ghidini, M.; Mansell, R.; Maccherozzi, F.; Moya, X.; Phillips, L. C.; Yan, W.; Pesquera, D.; Barnes, C. H. W.; Cowburn, R. P.; Hu, J. M. et al. Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat. Mater. 2019, 18, 840–845.

[98]

Domann, J.; Wu, T.; Chung, T. K.; Carman, G. Strain-mediated magnetoelectric storage, transmission, and processing: Putting the squeeze on data. MRS Bull. 2018, 43, 848–853.

[99]

Xue, X.; Zhou, Z. Y.; Dong, G. H.; Feng, M. M.; Zhang, Y. J.; Zhao, S. S.; Hu, Z. Q.; Ren, W.; Ye, Z. G.; Liu, Y. H. et al. Discovery of enhanced magnetoelectric coupling through electric field control of two-magnon scattering within distorted nanostructures. ACS Nano 2017, 11, 9286–9293.

[100]

Hu, J. M.; Nan, C. W. Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures. Phys. Rev. B 2009, 80, 224416.

[101]

Demidov, V. E.; Urazhdin, S.; Ulrichs, H.; Tiberkevich, V.; Slavin, A.; Baither, D.; Schmitz, G.; Demokritov, S. O. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 2012, 11, 1028–1031.

[102]

Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453–461.

[103]

Zhu, M. M.; Zhou, Z. Y.; Peng, B.; Zhao, S. S.; Zhang, Y. J.; Niu, G.; Ren, W.; Ye, Z. G.; Liu, Y. H.; Liu, M. Modulation of spin dynamics via voltage control of spin–lattice coupling in multiferroics. Adv. Funct. Mater. 2017, 27, 1605598.

[104]

Casparis, L.; Pearson, N. J.; Kringhøj, A.; Larsen, T. W.; Kuemmeth, F.; Nygård, J.; Krogstrup, P.; Petersson, K. D.; Marcus, C. M. Voltage-controlled superconducting quantum bus. Phys. Rev. B 2019, 99, 085434.

[105]
Peng, W. J.; Howe, B.; Yang, X. Multiferroic RF/microwave devices. In Integrated Multiferroic Heterostructures and Applications. Liu, M.; Zhou, Z. Y. , Eds.; Wiley: Hoboken, 2019.
[106]

Zhou, Y. L.; Cai, H.; Xie, L.; Han, M. L.; Liu, M. Y.; Xu, S.; Liu, B.; Zhao, W. S.; Yang, J. A self-timed voltage-mode sensing scheme with successive sensing and checking for STT-MRAM. IEEE Trans. Circuits Syst. I:Regular Papers 2020, 67, 1602–1614.

[107]

Long, M. Z.; Zeng, L.; Gao, T. Q.; Zhang, D. M.; Qin, X. W.; Zhang, Y. G.; Zhao, W. S. Self-adaptive write circuit for magnetic tunneling junction memory with voltage-controlled magnetic anisotropy effect. IEEE Trans. Nanotechnol. 2018, 17, 492–499.

[108]

Li, X.; Lee, A.; Razavi, S. A.; Wu, H.; Wang, K. L. Voltage-controlled magnetoelectric memory and logic devices. MRS Bull. 2018, 43, 970–977.

[109]

Nan, T. X.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G. L.; Chen, H. H.; Sun, N.; Wei, S. J.; Wang, Z. G.; Li, M. H. et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 8, 296.

[110]
Zaeimbashi, M.; Lin, H.; Wang, Z. G.; Chen, H. H.; Emam, S.; Gao, Y.; Sun, N. NanoNeuroRFID: A low loss brain implantable device based on magnetoelectric antenna. In 2018 IEEE International Microwave Biomedical Conference (IMBioC). Philadelphia, 2018, pp 205–207.
[111]

Chen, A. T.; Wen, Y.; Fang, B.; Zhao, Y. L.; Zhang, Q.; Chang, Y. S.; Li, P. S.; Wu, H.; Huang, H. L.; Lu, Y. L. et al. Giant nonvolatile manipulation of magnetoresistance in magnetic tunnel junctions by electric fields via magnetoelectric coupling. Nat. Commun. 2019, 10, 243.

[112]

Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241.

[113]

Jungwirth, T.; Sinova, J.; Manchon, A.; Marti, X.; Wunderlich, J.; Felser, C. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018, 14, 200–203.

[114]

Chen, X. Z.; Zhou, X. F.; Cheng, R.; Song, C.; Zhang, J.; Wu, Y. C.; Ba, Y.; Li, H. B.; Sun, Y. M.; You, Y. F. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 2019, 18, 931–935.

[115]

Park, I. J.; Lee, T.; Das, P.; Debnath, B.; Carman, G. P.; Lake, R. K. Strain control of the Néel vector in Mn-based antiferromagnets. Appl. Phys. Lett. 2019, 114, 142403.

[116]

Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.; Hu, J. M.; Shang, S. L.; Ji, Y.; Wang, J. M.; Hsu, S. L.; Wong, A. T.; Cordill, M. J. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat. Commun. 2018, 9, 41.

[117]

Wang, X. N.; Feng, Z. X.; Qin, P. X.; Yan, H.; Zhou, X. R.; Guo, H. X.; Leng, Z. G. G.; Chen, W. Q.; Jia, Q. N.; Hu, Z. X. et al. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019, 181, 537–543.

[118]

Boldrin, D.; Johnson, F.; Thompson, R.; Mihai, A. P.; Zou, B.; Zemen, J.; Griffiths, J.; Gubeljak, P.; Ormandy, K. L.; Manuel, P. et al. The biaxial strain dependence of magnetic order in spin frustrated Mn3NiN thin films. Adv. Funct. Mater. 2019, 29, 1902502.

[119]

Boldrin, D.; Mihai, A. P.; Zou, B.; Zemen, J.; Thompson, R.; Ware, E.; Neamtu, B. V.; Ghivelder, L.; Esser, B.; McComb, D. W. et al. Giant piezomagnetism in Mn3NiN. ACS Appl. Mater. Interfaces 2018, 10, 18863–18868.

[120]

Liu, Z.; Feng, Z.; Yan, H.; Wang, X.; Zhou, X.; Qin, P.; Guo, H.; Yu, R.; Jiang, C. Antiferromagnetic piezospintronics. Advanced Electronic Materials 2019, 5, 1900176.

[121]

Zhou, X. R.; Zhang, X. W.; Yi, J. B.; Qin, P. X.; Feng, Z. X.; Jiang, P. H.; Zhong, Z. C.; Yan, H.; Wang, X. N.; Chen, H. Y. et al. Antiferromagnetism in Ni-based superconductors. Adv. Mater. 2022, 34, 2106117.

[122]

Higo, T.; Kondou, K.; Nomoto, T.; Shiga, M.; Sakamoto, S.; Chen, X.; Nishio-Hamane, D.; Arita, R.; Otani, Y.; Miwa, S. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 2022, 607, 474–479.

[123]

Nakatsuji, S.; Kiyohara, N.; Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 2015, 527, 212–215.

[124]

Liu, Z. Q.; Chen, H.; Wang, J. M.; Liu, J. H.; Wang, K.; Feng, Z. X.; Yan, H.; Wang, X. R.; Jiang, C. B.; Coey, J. M. D. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 2018, 1, 172–177.

[125]

Yan, H.; Feng, Z. X.; Shang, S. L.; Wang, X. N.; Hu, Z. X.; Wang, J. H.; Zhu, Z. W.; Wang, H.; Chen, Z. H.; Hua, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotechnol. 2019, 14, 131–136.

[126]

Qin, P. X.; Feng, Z. X.; Zhou, X. R.; Guo, H. X.; Wang, J. H.; Yan, H.; Wang, X. N.; Chen, H. Y.; Zhang, X.; Wu, H. J. et al. Anomalous hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano 2020, 14, 6242–6248.

[127]

Guo, H. X.; Feng, Z. X.; Yan, H.; Liu, J. Z.; Zhang, J.; Zhou, X. R.; Qin, P. X.; Cai, J. L.; Zeng, Z. M.; Zhang, X. et al. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv. Mater. 2020, 32, 2002300.

[128]

Nogués, J.; Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232.

[129]

Kiwi, M. Exchange bias theory. J. Magn. Magn. Mater. 2001, 234, 584–595.

[130]

Binek, C.; Hochstrat, A.; Chen, X.; Borisov, P.; Kleemann, W.; Doudin, B. Electrically controlled exchange bias for spintronic applications. J. Appl. Phys. 2005, 97, 10C514.

[131]

Borisov, P.; Hochstrat, A.; Chen, X.; Kleemann, W.; Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 2005, 94, 117203.

[132]

He, X.; Wang, Y.; Wu, N.; Caruso, A. N.; Vescovo, E.; Belashchenko, K. D.; Dowben, P. A.; Binek, C. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 2010, 9, 579–585.

[133]

Laukhin, V.; Skumryev, V.; Martí, X.; Hrabovsky, D.; Sánchez, F.; García-Cuenca, M. V.; Ferrater, C.; Varela, M.; Lüders, U.; Bobo, J. F. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 2006, 97, 227201.

[134]

Zhao, T.; Scholl, A.; Zavaliche, F.; Lee, K.; Barry, M.; Doran, A.; Cruz, M. P.; Chu, Y. H.; Ederer, C.; Spaldin, N. A. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 2006, 5, 823–829.

[135]

Wu, S. M.; Cybart, S. A.; Yi, D.; Parker, J. M.; Ramesh, R.; Dynes, R. C. Full electric control of exchange bias. Phys. Rev. Lett. 2013, 110, 067202.

[136]

Yi, D.; Yu, P.; Chen, Y. C.; Lee, H. H.; He, Q.; Chu, Y. H.; Ramesh, R. Tailoring magnetoelectric coupling in BiFeO3/La0.7Sr0. 3MnO3 heterostructure through the interface engineering. Adv. Mater. 2019, 31, 1806335.

[137]

Burns, S. R.; Sando, D.; Xu, B.; Dupé, B.; Russell, L.; Deng, G. C.; Clements, R.; Paull, O. H. C.; Seidel, J.; Bellaiche, L. et al. Expansion of the spin cycloid in multiferroic BiFeO3 thin films. npj Quantum Mater. 2019, 4, 18.

[138]

Burns, S. R.; Paull, O.; Juraszek, J.; Nagarajan, V.; Sando, D. The experimentalist’s guide to the cycloid, or noncollinear antiferromagnetism in epitaxial BiFeO3. Adv. Mater. 2020, 32, 2003711.

[139]

Liao, Y. C.; Nikonov, D. E.; Dutta, S.; Chang, S. C.; Hsu, C. S.; Young, I. A.; Naeemi, A. Understanding the switching mechanisms of the antiferromagnet/ferromagnet heterojunction. Nano Lett. 2020, 20, 7919–7926.

[140]

Fischer, J. K. H.; Ueda, H.; Kimura, T. Domain switching and exchange bias control by electric field in the multiferroic conical magnet Mn2 Ge O4. Phys. Rev. B 2020, 102, 054412.

[141]

Hirai, T.; Koyama, T.; Chiba, D. Electric field modulation of exchange bias at the Co/Co Ox interface. Phys. Rev. B 2020, 101, 014447.

[142]

Liu, M.; Lou, J.; Li, S. D.; Sun, N. X. E-Field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures. Adv. Funct. Mater. 2011, 21, 2593–2598.

[143]

Yang, Q.; Hu, Z. Q.; Zhang, Y.; Su, W.; Cheng, Y. X.; Peng, B.; Wu, J. G.; Zhou, Z. Y.; He, Y.; Cui, W. Z. et al. Voltage control of perpendicular exchange bias in multiferroic heterostructures. Adv. Electron. Mater. 2019, 5, 1900192.

[144]

Li, P.; Zhou, X. S.; Guo, Z. X. Intriguing magnetoelectric effect in two-dimensional ferromagnetic/perovskite oxide ferroelectric heterostructure. npj Comput. Mater. 2022, 8, 20.

[145]

Chakhalian, J.; Freeland, J. W.; Habermeier, H. U.; Cristiani, G.; Khaliullin, G.; Van Veenendaal, M.; Keimer, B. Orbital reconstruction and covalent bonding at an oxide interface. Science 2007, 318, 1114–1117.

[146]

Kyuno, K.; Ha, J. G.; Yamamoto, R.; Asano, S. First-principles calculation of the magnetic anisotropy energies of Ag/Fe(001) and Au/Fe(001) multilayers. J. Phys. Soc. Jpn. 1996, 65, 1334–1339.

[147]

Odkhuu, D. Electric control of magnetization reorientation in FeRh/BaTiO3 mediated by a magnetic phase transition. Phys. Rev. B 2017, 96, 134402.

[148]

Chen, W. Z.; Jiang, L. N.; Yan, Z. R.; Zhu, Y.; Wan, C. H.; Han, X. F. Origin of the large voltage-controlled magnetic anisotropy in a Cr/Fe/MgO junction with an ultrathin Fe layer: First-principles investigation. Phys. Rev. B 2020, 101, 144434.

[149]

Wang, S. R.; Yao, M. K.; Li, Z. R.; Feng, C.; Wang, L.; Tang, X. L.; Kang, P.; Zhang, B.; Mi, W. B.; Yu, G. H. Nitrogen tuned charge redistribution and orbital reconfiguration in Fe/MgO interface for significant interfacial magnetism tunability. Adv. Funct. Mater. 2019, 29, 1806677.

[150]

Preziosi, D.; Alexe, M.; Hesse, D.; Salluzzo, M. Electric-field control of the orbital occupancy and magnetic moment of a transition-metal oxide. Phys. Rev. Lett. 2015, 115, 157401.

[151]

Cui, B.; Song, C.; Mao, H. J.; Yan, Y. N.; Li, F.; Gao, S.; Peng, J. J.; Zeng, F.; Pan, F. Manipulation of electric field effect by orbital switch. Adv. Funct. Mater. 2016, 26, 753–759.

[152]

Panchal, G.; Phase, D. M.; Reddy, V. R.; Choudhary, R. J. Strain-induced elastically controlled magnetic anisotropy switching in epitaxial La0.7Sr0. 3MnO3 thin films on BaTiO3(001). Phys. Rev. B 2018, 98, 045417.

[153]

Yu, X. Q.; Wu, L. J.; Zhang, B. M.; Zhou, H.; Dong, Y. Q.; Wu, X. H.; Kou, R. H.; Yang, P.; Chen, J. S.; Sun, C. J. et al. Thickness-dependent polarization-induced intrinsic magnetoelectric effects in La0.67Sr0. 33MnO3/PbZr0. 52Ti0. 48O3 heterostructures. Phys. Rev. B 2019, 100, 104405.

[154]

Li, H. B.; Lu, N. P.; Zhang, Q. H.; Wang, Y. J.; Feng, D. Q.; Chen, T. Z.; Yang, S. Z.; Duan, Z.; Li, Z. L.; Shi, Y. J. et al. Electric-field control of ferromagnetism through oxygen ion gating. Nat. Commun. 2017, 8, 2156.

[155]

Lu, N. P.; Zhang, P. F.; Zhang, Q. H.; Qiao, R. M.; He, Q.; Li, H. B.; Wang, Y. J.; Guo, J. W.; Zhang, D.; Duan, Z. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124–128.

[156]
Zhu, X. J.; Zhou, J. T.; Chen, L.; Guo, S. S.; Liu, G.; Li, R. W.; Lu, W. D. In situ nanoscale electric field control of magnetism by nanoionics. Adv. Mater. 2016, 28, 7658–7665.
[157]

Leng, X.; Pereiro, J.; Strle, J.; Dubuis, G.; Bollinger, A. T.; Gozar, A.; Wu, J.; Litombe, N.; Panagopoulos, C.; Pavuna, D. et al. Insulator to metal transition in WO3 induced by electrolyte gating. npj Quantum Mater. 2017, 2, 35.

[158]
Walter, J.; Yu, G.; Yu, B.; Grutter, A.; Kirby, B.; Borchers, J.; Zhang, Z.; Zhou, H.; Birol, T.; Greven, M. Ion-gel-gating-induced oxygen vacancy formation in epitaxial La0.5Sr0.5CoO3−δ films from in operando x-ray and neutron scattering. Phys. Rev. Mater. 2017, 1, 071403(R).
[159]

Zhang, Q. Y.; Luo, X.; Wang, L. N.; Zhang, L. F.; Khalid, B.; Gong, J. H.; Wu, H. Lithium-ion battery cycling for magnetism control. Nano Lett. 2016, 16, 583–587.

[160]

Bauer, U.; Yao, L. D.; Tan, A. J.; Agrawal, P.; Emori, S.; Tuller, H. L.; Van Dijken, S.; Beach, G. S. D. Magneto-ionic control of interfacial magnetism. Nat. Mater. 2015, 14, 174–181.

[161]

Dasgupta, S.; Das, B.; Li, Q.; Wang, D.; Baby, T. T.; Indris, S.; Knapp, M.; Ehrenberg, H.; Fink, K.; Kruk, R. et al. Toward on-and-off magnetism: Reversible electrochemistry to control magnetic phase transitions in spinel ferrites. Adv. Funct. Mater. 2016, 26, 7507–7515.

[162]

Bauer, U.; Emori, S.; Beach, G. S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nat. Nanotechnol. 2013, 8, 411–416.

[163]

Navarro-Senent, C.; Quintana, A.; Menéndez, E.; Pellicer, E.; Sort, J. Electrolyte-gated magnetoelectric actuation: Phenomenology, materials, mechanisms, and prospective applications. APL Mater. 2019, 7, 030701.

[164]

Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 2019, 18, 13–18.

[165]

Bi, C.; Liu, Y. H.; Newhouse-Illige, T.; Xu, M.; Rosales, M.; Freeland, J. W.; Mryasov, O.; Zhang, S. F.; Te Velthuis, S. G. E.; Wang, W. G. Reversible control of Co magnetism by voltage-induced oxidation. Phys. Rev. Lett. 2014, 113, 267202.

[166]

Knag, P.; Lu, W.; Zhang, Z. Y. A native stochastic computing architecture enabled by memristors. IEEE Trans. Nanotechnol. 2014, 13, 283–293.

[167]

Pershin, Y. V.; Di Ventra, M. Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 2010, 23, 881–886.

[168]

Burr, G. W.; Shelby, R. M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124.

[169]

Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; De Leeuw, D. M. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 2005, 4, 243–248.

[170]

Panzer, M. J.; Frisbie, C. D. Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 2005, 127, 6960–6961.

[171]

Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schütz, M.; Maisch, S.; Effenberger, F.; Brunnbauer, M.; Stellacci, F. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 2004, 431, 963–966.

[172]

Tan, A. J.; Huang, M. T.; Avci, C. O.; Büttner, F.; Mann, M.; Hu, W.; Mazzoli, C.; Wilkins, S.; Tuller, H. L.; Beach, G. S. D. Magneto-ionic control of magnetism using a solid-state proton pump. Nat. Mater. 2019, 18, 35–41.

[173]

Ahn, C. H.; Bhattacharya, A.; Di Ventra, M.; Eckstein, J. N.; Frisbie, C. D.; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, A. J. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 2006, 78, 1185–1212.

[174]

Ahn, C. H.; Triscone, J. M.; Mannhart, J. Electric field effect in correlated oxide systems. Nature 2003, 424, 1015–1018.

[175]

Ohno, H.; Chiba, D.; Matsukura, F.; Omiya, T.; Abe, E.; Dietl, T.; Ohno, Y.; Ohtani, K. Electric-field control of ferromagnetism. Nature 2000, 408, 944–946.

[176]

Weisheit, M.; Fähler, S.; Marty, A.; Souche, Y.; Poinsignon, C.; Givord, D. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 2007, 315, 349–351.

[177]

Obinata, A.; Hibino, Y.; Hayakawa, D.; Koyama, T.; Miwa, K.; Ono, S.; Chiba, D. Electric-field control of magnetic moment in Pd. Sci. Rep. 2015, 5, 14303.

[178]

Zhao, S. S.; Zhou, Z. Y.; Li, C. L.; Peng, B.; Hu, Z. Q.; Liu, M. Low-voltage control of (Co/Pt)x perpendicular magnetic anisotropy heterostructure for flexible spintronics. ACS Nano 2018, 12, 7167–7173.

[179]

Yang, Q.; Wang, L.; Zhou, Z. Y.; Wang, L. Q.; Zhang, Y. J.; Zhao, S. S.; Dong, G. H.; Cheng, Y. X.; Min, T.; Hu, Z. Q. et al. Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers. Nat. Commun. 2018, 9, 991.

[180]

Yang, Q.; Zhou, Z. Y.; Wang, L. Q.; Zhang, H. J.; Cheng, Y. X.; Hu, Z. Q.; Peng, B.; Liu, M. Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv. Mater. 2018, 30, 1800449.

[181]

Bisri, S. Z.; Shimizu, S.; Nakano, M.; Iwasa, Y. Endeavor of Iontronics: From fundamentals to applications of ion-controlled electronics. Adv. Mater. 2017, 29, 1607054.

[182]

Du, H. W.; Lin, X.; Xu, Z. M.; Chu, D. W. Electric double-layer transistors: A review of recent progress. J. Mater. Sci. 2015, 50, 5641–5673.

[183]

Fujimoto, T.; Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 2013, 15, 8983–9006.

[184]

Kim, S. H.; Hong, K.; Xie, W.; Lee, K. H.; Zhang, S. P.; Lodge, T. P.; Frisbie, C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846.

[185]

Zhang, L.; Hou, W. X.; Dong, G. H.; Zhou, Z. Y.; Zhao, S. S.; Hu, Z. Q.; Ren, W.; Chen, M. F.; Nan, C. W.; Ma, J. et al. Low voltage induced reversible magnetoelectric coupling in Fe3O4 thin films for voltage tunable spintronic devices. Mater. Horiz. 2018, 5, 991–999.

[186]

Walter, J.; Wang, H. L.; Luo, B.; Frisbie, C. D.; Leighton, C. Electrostatic versus electrochemical doping and control of ferromagnetism in ion-gel-gated ultrathin La0.5Sr0. 5CoO3-δ. ACS Nano 2016, 10, 7799–7810.

[187]

Molinari, A.; Leufke, P. M.; Reitz, C.; Dasgupta, S.; Witte, R.; Kruk, R.; Hahn, H. Hybrid supercapacitors for reversible control of magnetism. Nat. Commun. 2017, 8, 15339.

[188]

Molinari, A.; Hahn, H.; Kruk, R. Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv. Mater. 2018, 30, 1703908.

[189]
Walter, J.; Charlton, T.; Ambaye, H.; Fitzsimmons, M. R.; Orth, P. P.; Fernandes, R. M.; Leighton, C. Giant electrostatic modification of magnetism via electrolyte-gate-induced cluster percolation in La1−xSrxCoO3−δ. Phys. Rev. Mater. 2018, 2, 111406(R).
[190]

Leighton, C.; Birol, T.; Walter, J. What controls electrostatic vs electrochemical response in electrolyte-gated materials? A perspective on critical materials factors. APL Mater. 2022, 10, 040901.

[191]

Yang, H. X.; Thiaville, A.; Rohart, S.; Fert, A.; Chshiev, M. Anatomy of dzyaloshinskii–moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 2015, 115, 267210.

[192]

Hoffmann, A. Spin hall effects in metals. IEEE Trans. Magn. 2013, 49, 5172–5193.

[193]

Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.

[194]

Stair, P. C. Metal-oxide interfaces: Where the action is. Nat. Chem. 2011, 3, 345–346.

[195]

Chen, L.; Matsukura, F.; Ohno, H. Electric-field modulation of damping constant in a ferromagnetic semiconductor (Ga, Mn) as. Phys. Rev. Lett. 2015, 115, 057204.

[196]

Sawicki, M.; Chiba, D.; Korbecka, A.; Nishitani, Y.; Majewski, J. A.; Matsukura, F.; Dietl, T.; Ohno, H. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn) As. Nat. Phys. 2010, 6, 22–25.

[197]

Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004, 104, 4791–4844.

[198]

Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805–815.

[199]

Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 2012, 11, 502–506.

[200]

Miron, I. M.; Gaudin, G.; Auffret, S.; Rodmacq, B.; Schuhl, A.; Pizzini, S.; Vogel, J.; Gambardella, P. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 2010, 9, 230–234.

[201]

Jeong, J.; Aetukuri, N.; Graf, T.; Schladt, T. D.; Samant, M. G.; Parkin, S. S. P. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 2013, 339, 1402–1405.

[202]

Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

[203]

Yamada, Y.; Tsung, C. K.; Huang, W. Y.; Huo, Z. Y.; Habas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P. D. Nanocrystal bilayer for tandem catalysis. Nat. Chem. 2011, 3, 372–376.

[204]

Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663.

[205]

Manchon, A.; Pizzini, S.; Vogel, J.; Uhlîr, V.; Lombard, L.; Ducruet, C.; Auffret, S.; Rodmacq, B.; Dieny, B.; Hochstrasser, M. et al. X-ray analysis of the magnetic influence of oxygen in Pt∕Co∕AlOx trilayers. J. Appl. Phys. 2008, 103, 07A912.

[206]

Rodmacq, B.; Manchon, A.; Ducruet, C.; Auffret, S.; Dieny, B. Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers. Phys. Rev. B 2009, 79, 024423.

[207]

Cui, B.; Song, C.; Gehring, G. A.; Li, F.; Wang, G. Y.; Chen, C.; Peng, J. J.; Mao, H. J.; Zeng, F.; Pan, F. Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv. Funct. Mater. 2015, 25, 864–870.

[208]

Cui, B.; Song, C.; Wang, G. Y.; Yan, Y. N.; Peng, J. J.; Miao, J. H.; Mao, H. J.; Li, F.; Chen, C.; Zeng, F. et al. Reversible ferromagnetic phase transition in electrode-gated manganites. Adv. Funct. Mater. 2014, 24, 7233–7240.

[209]

Spaldin, N. A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212.

[210]

Duan, C. G.; Velev, J. P.; Sabirianov, R. F.; Zhu, Z. Q.; Chu, J. H.; Jaswal, S. S.; Tsymbal, E. Y. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 2008, 101, 137201.

[211]

Shiota, Y.; Nozaki, T.; Bonell, F.; Murakami, S.; Shinjo, T.; Suzuki, Y. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 2012, 11, 39–43.

[212]

De Rojas, J.; Quintana, A.; Lopeandía, A.; Salguero, J.; Costa-Krämer, J. L.; Abad, L.; Liedke, M. O.; Butterling, M.; Wagner, A.; Henderick, L. et al. Boosting room-temperature magneto-ionics in a non-magnetic oxide semiconductor. Adv. Funct. Mater. 2020, 30, 2003704.

[213]

Fassatoui, A.; Ranno, L.; PeñaGarcia, J.; Balan, C.; Vogel, J.; Béa, H.; Pizzini, S. Kinetics of ion migration in the electric field-driven manipulation of magnetic anisotropy of Pt/Co/oxide multilayers. Small 2021, 17, 2102427.

[214]

Cui, B.; Werner, P.; Ma, T. P.; Zhong, X. Y.; Wang, Z. C.; Taylor, J. M.; Zhuang, Y. C.; Parkin, S. S. P. Direct imaging of structural changes induced by ionic liquid gating leading to engineered three-dimensional meso-structures. Nat. Commun. 2018, 9, 3055.

[215]

Ni, J. Y.; Wang, P. S.; Lu, J. L.; Xiang, H. J. Realizing magnetoelectric coupling with hydrogen intercalation. Phys. Rev. Lett. 2019, 122, 117601.

[216]

Tan, A. J.; Huang, M. T.; Sheffels, S.; Büttner, F.; Kim, S.; Hunt, A. H.; Waluyo, I.; Tuller, H. L.; Beach, G. S. D. Hydration of gadolinium oxide (GdOx) and its effect on voltage-induced Co oxidation in a Pt/Co/GdOx/Au heterostructure. Phys. Rev. Mater. 2019, 3, 064408.

[217]

Wang, M.; Shen, S. C.; Ni, J. Y.; Lu, N. P.; Li, Z. L.; Li, H. B.; Yang, S. Z.; Chen, T. Z.; Guo, J. W.; Wang, Y. J. et al. Electric-field-controlled phase transformation in WO3 thin films through hydrogen evolution. Adv. Mater. 2017, 29, 1703628.

[218]

Li, H. B.; Lou, F.; Wang, Y. J.; Zhang, Y.; Zhang, Q. H.; Wu, D.; Li, Z. L.; Wang, M.; Huang, T. T.; Lyu, Y. J. et al. Electric field-controlled multistep proton evolution in HxSrCoO2.5 with formation of H-H dimer. Adv. Sci. 2019, 6, 1901432.

[219]

Wang, Q.; Gu, Y. D.; Yin, S. Q.; Sun, Y. M.; Liu, W.; Zhang, Z. D.; Pan, F.; Song, C. Facilitating room-temperature oxygen ion migration via Co–O bond activation in cobaltite films. Nanoscale 2021, 13, 18256–18266.

[220]

Hu, S. B.; Zhu, Y. M.; Han, W. Q.; Li, X. W.; Ji, Y. J.; Ye, M.; Jin, C.; Liu, Q.; Hu, S. X.; Wang, J. O. et al. High-conductive protonated layered oxides from H2O vapor-annealed brownmillerites. Adv. Mater. 2021, 33, 2104623.

[221]

Wei, G. D.; Wei, L.; Wang, D.; Chen, Y. X.; Tian, Y. F.; Yan, S. S.; Mei, L. M.; Jiao, J. Reversible control of magnetization of Fe3O4 by a solid-state film lithium battery. Appl. Phys. Lett. 2017, 110, 062404.

[222]

Taniguchi, K.; Narushima, K.; Yamagishi, K.; Shito, N.; Kosaka, W.; Miyasaka, H. Magneto-ionic phase control in a quasi-layered donor/acceptor metal-organic framework by means of a Li-ion battery system. Jpn. J. Appl. Phys. 2017, 56, 060307.

[223]

Dasgupta, S.; Das, B.; Knapp, M.; Brand, R. A.; Ehrenberg, H.; Kruk, R.; Hahn, H. Intercalation-driven reversible control of magnetism in bulk ferromagnets. Adv. Mater. 2014, 26, 4639–4644.

[224]

Klinser, G.; Stückler, M.; Kren, H.; Koller, S.; Goessler, W.; Krenn, H.; Würschum, R. Charging processes in the cathode LiNi0.6Mn0. 2Co0. 2O2 as revealed by operando magnetometry. J. Power Sources 2018, 396, 791–795.

[225]

Klinser, G.; Topolovec, S.; Kren, H.; Koller, S.; Gössler, W.; Krenn, H.; Würschum, R. Continuous monitoring of the bulk oxidation states in LixNi1/3Mn1/3Co1/3O2 during charging and discharging. Appl. Phys. Lett. 2016, 109, 213901.

[226]

Wei, G. D.; Wei, L.; Wang, D.; Chen, Y. X.; Tian, Y. F.; Yan, S. S.; Mei, L. M.; Jiao, J. Reversible control of the magnetization of spinel ferrites based electrodes by lithium-ion migration. Sci. Rep. 2017, 7, 12554.

[227]

Yamada, T.; Morita, K.; Kume, K.; Yoshikawa, H.; Awaga, K. The solid-state electrochemical reduction process of magnetite in Li batteries: In situ magnetic measurements toward electrochemical magnets. J. Mater. Chem. C 2014, 2, 5183–5188.

[228]

Reitz, C.; Suchomski, C.; Wang, D.; Hahn, H.; Brezesinski, T. In situ tuning of magnetization via topotactic lithium insertion in ordered mesoporous lithium ferrite thin films. J. Mater. Chem. C 2016, 4, 8889–8896.

[229]

Rongeat, C.; Anji Reddy, M.; Witter, R.; Fichtner, M. Solid electrolytes for fluoride ion batteries: Ionic conductivity in polycrystalline tysonite-type fluorides. ACS Appl. Mater. Interfaces 2014, 6, 2103–2110.

[230]

Reddy, M. A.; Fichtner, M. Batteries based on fluoride shuttle. J. Mater. Chem. 2011, 21, 17059–17062.

[231]

Vasala, S.; Jakob, A.; Wissel, K.; Waidha, A. I.; Alff, L.; Clemens, O. Reversible tuning of magnetization in a ferromagnetic Ruddlesden-popper-type manganite by electrochemical fluoride-ion intercalation. Adv. Electron. Mater. 2020, 6, 1900974.

[232]

Namiki, W.; Tsuchiya, T.; Takayanagi, M.; Higuchi, T.; Terabe, K. Room-temperature manipulation of magnetization angle, achieved with an all-solid-state redox device. ACS Nano 2020, 14, 16065–16072.

[233]

Ameziane, M.; Mansell, R.; Havu, V.; Rinke, P.; Van Dijken, S. Lithium-ion battery technology for voltage control of perpendicular magnetization. Adv. Funct. Mater. 2022, 32, 2113118.

[234]

De Rojas, J.; Quintana, A.; Lopeandía, A.; Salguero, J.; Muñiz, B.; Ibrahim, F.; Chshiev, M.; Nicolenco, A.; Liedke, M. O.; Butterling, M. et al. Voltage-driven motion of nitrogen ions: A new paradigm for magneto-ionics. Nat. Commun. 2020, 11, 5871.

[235]

Wang, Z. R.; Wu, H. Q.; Burr, G. W.; Hwang, C. S.; Wang, K. L.; Xia, Q. F.; Yang, J. J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195.

[236]

Zhang, F. L.; Li, Z. H.; Xia, Q. T.; Zhang, Q. H.; Ge, C.; Chen, Y. X.; Li, X. K.; Zhang, L. Q.; Wang, K.; Li, H. S. et al. Li-ionic control of magnetism through spin capacitance and conversion. Matter 2021, 4, 3605–3620.

[237]

Khorsand, A. R.; Savoini, M.; Kirilyuk, A.; Kimel, A. V.; Tsukamoto, A.; Itoh, A.; Rasing, T. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 2012, 108, 127205.

[238]

Kimel, A. V.; Kirilyuk, A.; Usachev, P. A.; Pisarev, R. V.; Balbashov, A. M.; Rasing, T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 2005, 435, 655–657.

[239]

Stanciu, C. D.; Hansteen, F.; Kimel, A. V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007, 99, 047601.

[240]

Náfrádi, B.; Szirmai, P.; Spina, M.; Lee, H.; Yazyev, O. V.; Arakcheeva, A.; Chernyshov, D.; Gibert, M.; Forró, L.; Horváth, E. Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn: Pb)I3. Nat. Commun. 2016, 7, 13406.

[241]

Li, F.; Song, C.; Cui, B.; Peng, J. J.; Gu, Y. D.; Wang, G. Y.; Pan, F. Photon-gated spin transistor. Adv. Mater. 2017, 29, 1604052.

[242]

Náfrádi, B.; Szirmai, P.; Spina, M.; Pisoni, A.; Mettan, X.; Nemes, N. M.; Forró, L.; Horváth, E. Tuning ferromagnetism at room temperature by visible light. Proc. Natl. Acad. Sci. USA 2020, 117, 6417–6423.

[243]

Sun, X. N.; Vélez, S.; Atxabal, A.; Bedoya-Pinto, A.; Parui, S.; Zhu, X. W.; Llopis, R.; Casanova, F.; Hueso, L. E. A molecular spin-photovoltaic device. Science 2017, 357, 677–680.

[244]

Guo, L. D.; Qin, Y.; Gu, X. R.; Zhu, X. W.; Zhou, Q.; Sun, X. N. Spin transport in organic molecules. Front. Chem. 2019, 7, 428.

[245]

Zhao, Y. F.; Zhao, M.; Tian, B.; Jiang, Z. D.; Wang, Y. H.; Liu, M.; Zhou, Z. Y. Enhancing sunlight control of interfacial magnetism by introducing the ZnO layer for electron harvesting. ACS Appl. Mater. Interfaces 2021, 13, 2018–2024.

[246]

Zhao, S. S.; Zhao, Y. F.; Tian, B.; Liu, J. X.; Jin, S. Y.; Jiang, Z. D.; Zhou, Z. Y.; Liu, M. Photovoltaic control of ferromagnetism for flexible spintronics. ACS Appl. Mater. Interfaces 2020, 12, 41999–42006.

[247]

Zhao, Y. F.; Zhao, S. S.; Wang, L.; Zhou, Z. Y.; Liu, J. X.; Min, T.; Peng, B.; Hu, Z. Q.; Jin, S. Y.; Liu, M. Sunlight control of interfacial magnetism for solar driven spintronic applications. Adv. Sci. 2019, 6, 1901994.

[248]

Zhao, Y. F.; Zhao, S. S.; Wang, L.; Wang, S. P.; Du, Y. J.; Zhao, Y. N.; Jin, S. Y.; Min, T.; Tian, B.; Jiang, Z. D. et al. Photovoltaic modulation of ferromagnetism within a FM metal/P-N junction Si heterostructure. Nanoscale 2021, 13, 272–279.

[249]

Li, C. L.; Li, Y. J.; Zhao, Y. F.; Du, Y. J.; Zhao, M.; Peng, W. J.; Wu, Y. Y.; Liu, M.; Zhou, Z. Y. Sunlight control of ferromagnetic damping in photovoltaic/ferromagnetic heterostructures. Adv. Funct. Mater. 2022, 32, 2111652.

[250]

Yu, H. M.; Xiao, J.; Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 2021, 905, 1–59.

[251]

Li, Z. X.; Cao, Y. S.; Yan, P. Topological insulators and semimetals in classical magnetic systems. Phys. Rep. 2021, 915, 1–64.

[252]
Skyrme, T. H. R. A non-linear field theory. In Selected Papers with Commentary, of Tony Hilton Royle Skyrme. Brown, G. , Ed.; World Scientific Publishing House: Hong Kong, China, 1994; pp 195–206.
[253]

Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 1962, 31, 556–569.

[254]

Luo, S. J.; Xu, N.; Guo, Z.; Zhang, Y.; Hong, J.; You, L. Voltage-controlled skyrmion memristor for energy-efficient synapse applications. IEEE Electron Device Lett. 2019, 40, 635–638.

[255]

Wang, Y. D.; Wang, L.; Xia, J.; Lai, Z. X.; Tian, G.; Zhang, X. C.; Hou, Z. P.; Gao, X. S.; Mi, W. B.; Feng, C. et al. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat. Commun. 2020, 11, 3577.

[256]

Gusev, N. S.; Sadovnikov, A. V.; Nikitov, S. A.; Sapozhnikov, M. V.; Udalov, O. G. Manipulation of the Dzyaloshinskii–Moriya interaction in Co/Pt multilayers with strain. Phys. Rev. Lett. 2020, 124, 157202.

[257]

Ba, Y.; Zhuang, S. H.; Zhang, Y. K.; Wang, Y. T.; Gao, Y.; Zhou, H. G.; Chen, M. F.; Sun, W. D.; Liu, Q.; Chai, G. Z. et al. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling. Nat. Commun. 2021, 12, 322.

[258]
Hou, Z. P.; Wang, Y. D.; Lan, X. M.; Li, S.; Wan, X. J.; Meng, F.; Hu, Y. F.; Fan, Z.; Feng, C.; Qin, M. H. et al. Controlled switching of the number of skyrmions in a magnetic nanodot by electric fields (Adv. Mater. 11/2022). Adv. Mater. 2022, 34, 2270090.
[259]

Hu, J. M.; Yang, T. N.; Chen, L. Q. Strain-mediated voltage-controlled switching of magnetic skyrmions in nanostructures. npj Comput. Mater. 2018, 4, 62.

[260]

Wang, J.; Shi, Y. N.; Kamlah, M. Uniaxial strain modulation of the skyrmion phase transition in ferromagnetic thin films. Phys. Rev. B 2018, 97, 024429.

[261]

Nii, Y.; Nakajima, T.; Kikkawa, A.; Yamasaki, Y.; Ohishi, K.; Suzuki, J.; Taguchi, Y.; Arima, T.; Tokura, Y.; Iwasa, Y. Uniaxial stress control of skyrmion phase. Nat. Commun. 2015, 6, 8539.

[262]

Hsu, P. J.; Kubetzka, A.; Finco, A.; Romming, N.; Von Bergmann, K.; Wiesendanger, R. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol. 2017, 12, 123–126.

[263]

Li, H.; Ruan, S. C.; Zeng, Y. J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065.

[264]

Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283.

[265]

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

[266]

Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

[267]

Zhuo, W. Z.; Lei, B.; Wu, S.; Yu, F. H.; Zhu, C. S.; Cui, J. H.; Sun, Z. L.; Ma, D. H.; Shi, M. Z.; Wang, H. H. et al. Manipulating ferromagnetism in few-layered Cr2Ge2Te6. Adv. Mater. 2021, 33, 2008586.

[268]

Gong, C.; Kim, E. M.; Wang, Y.; Lee, G.; Zhang, X. Multiferroicity in atomic van der Waals heterostructures. Nat. Commun. 2019, 10, 2657.

[269]

Mahajan, A.; Bhowmick, S. Decoupled strain response of ferroic properties in a multiferroic VOCl2 monolayer. Phys. Rev. B 2021, 103, 075436.

[270]

Liu, X. G.; Pyatakov, A. P.; Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 2020, 125, 247601.

[271]

Zhang, J. L.; Wu, S. Y.; Shan, Y.; Guo, J. H.; Yan, S.; Xiao, S. Y.; Yang, C. B.; Shen, J. C.; Chen, J.; Liu, L. Z. et al. Distorted monolayer ReS2 with low-magnetic-field controlled magnetoelectricity. ACS Nano 2019, 13, 2334–2340.

[272]

Song, Q.; Occhialini, C. A.; Ergeçen, E.; Ilyas, B.; Amoroso, D.; Barone, P.; Kapeghian, J.; Watanabe, K.; Taniguchi, T.; Botana, A. S. et al. Evidence for a single-layer van der Waals multiferroic. Nature 2022, 602, 601–605.

[273]

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

[274]

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

[275]

Kim, H. H.; Jiang, S. W.; Yang, B. W.; Zhong, S. Z.; Tian, S. J.; Li, C. H.; Lei, H. C.; Shan, J.; Mak, K. F.; Tsen, A. W. Magneto-memristive switching in a 2D layer antiferromagnet. Adv. Mater. 2020, 32, 1905433.

[276]

Gao, A. Y.; Liu, Y. F.; Hu, C. W.; Qiu, J. X.; Tzschaschel, C.; Ghosh, B.; Ho, S. C.; Bérubé, D.; Chen, R.; Sun, H. P. et al. Layer hall effect in a 2D topological axion antiferromagnet. Nature 2021, 595, 521–525.

[277]

Mishra, S.; Yanda, P.; Sundaresan, A. Magnetoelectric effect in the honeycomb-lattice antiferromagnet BaNi2(PO4)2. Phys. Rev. B 2021, 103, 214443.

[278]

Chen, R.; Wang, J. F.; Ouyang, Z. W.; He, Z. Z.; Wang, S. M.; Lin, L.; Liu, J. M.; Lu, C. L.; Liu, Y.; Dong, C. et al. Magnetic field induced ferroelectricity and half magnetization plateau in polycrystalline R2V2O7 (R = Ni, Co). Phys. Rev. B 2018, 98, 184404.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2022
Revised: 17 September 2022
Accepted: 29 September 2022
Published: 21 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

All figures reuse permissions from other sources have been obtained. This work was supported by the National Key Research and Development Program of China (Nos. 2018YFB0407601 and 2019YFA0307900), the National Natural Science Foundation of China (Nos. 91964109 and 51972028), the National 111 Project of China (No. B14040), and the Key Research and Developmen Program of Shaanxi (No. 2019TSLG).

Return