Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional (2D) nanomaterials have aroused immense attention in extensive applications due to their intriguing physical and chemical properties. However, there is a formidable challenge to prepare few-layered and functionalized 2D nanomaterials in an effective and universal way. Herein, we developed an integrated strategy of glucose-assisted mechanochemical exfoliation and cosolvent-intensified sonication exfoliation to effectively exfoliate and functionalize 2D materials. Taking exfoliation of boron nitride (BN) as an example, the production yield and functionalization ratio of BN nanosheets (BNNSs) reached 47.5% and 25.8 wt.%, 188% and 16% higher than that of BNNSs without sonication exfoliation, respectively. The introduction of glucose not only augmented the friction force between adjacent BN layers to promote the efficiency of ball-milling-driven exfoliation supported by density functional theory calculation, but also reacted with active edges of BNNSs for functionalization. Afterwards, cosolvent-intensified sonication exfoliation strongly stabilized exfoliated BNNSs, obviously boosting the exfoliation yield. This proposed method is universal for preparing various 2D nanomaterials like molybdenum disulfide, tungsten disulfide, and graphene nanosheets. The thin plate structure and high functionalization ratio enabled the release of property superiorities of 2D nanomaterials. Our work offers a promising prototype to realize mass production of functionalized 2D nanomaterials.
Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.
Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.
Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012.
Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.
Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano 2011, 5, 7303–7309.
Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.
Witomska, S.; Leydecker, T.; Ciesielski, A.; Samorì, P. Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 2019, 29, 1901126.
Yan, Q. W.; Dai, W.; Gao, J. Y.; Tan, X.; Lv, L.; Ying, J. F.; Lu, X. X.; Lu, J. B.; Yao, Y. G.; Wei, Q. P. et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498.
Tian, X. J.; Wu, N.; Zhang, B.; Wang, Y. F.; Geng, Z. S.; Li, Y. F. Glycine functionalized boron nitride nanosheets with improved dispersibility and enhanced interaction with matrix for thermal composites. Chem. Eng. J. 2021, 408, 127360.
Yang, S.; Zhang, P. P.; Nia, A. S.; Feng, X. L. Emerging 2D materials produced via electrochemistry. Adv. Mater. 2020, 32, 1907857.
Yang, L. S.; Chen, W. J.; Yu, Q. M.; Liu, B. L. Mass production of two-dimensional materials beyond graphene and their applications. Nano Res. 2021, 14, 1583–1597.
Chen, S. H.; Xu, R. Z.; Liu, J. M.; Zou, X. L.; Qiu, L.; Kang, F. Y.; Liu, B. L.; Cheng, H. M. Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 2019, 31, 1804810.
Shi, D.; Yang, M. Z.; Chang, B.; Ai, Z. Z.; Zhang, K.; Shao, Y. L.; Wang, S. Z.; Wu, Y. Z.; Hao, X. P. Ultrasonic-ball milling: A novel strategy to prepare large-size ultrathin 2D materials. Small 2020, 16, 1906734.
Wu, H. X.; Yin, S. C.; Du, Y.; Wang, L. P.; Yang, Y.; Wang, H. F. Alkyl-functionalized boron nitride nanosheets as lubricant additives. ACS Appl. Nano Mater. 2020, 3, 9108–9116.
Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240.
Lee, D.; Lee, B.; Park, K. H.; Ryu, H. J.; Jeon, S.; Hong, S. H. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 2015, 15, 1238–1244.
Fan, D. L.; Feng, J.; Liu, J.; Gao, T. Y.; Ye, Z. X.; Chen, M.; Lv, X. M. Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis. Ceram. Int. 2016, 42, 7155–7163.
Wan, L. Q.; Liu, C.; Cao, D. X.; Sun, X.; Zhu, H. L. High phase change enthalpy enabled by nanocellulose enhanced shape stable boron nitride aerogel. ACS Appl. Polym. Mater. 2020, 2, 3001–3009.
Wang, Z. G.; Wei, X.; Bai, M. H.; Lei, J.; Xu, L.; Huang, H. D.; Du, J. G.; Dai, K.; Xu, J. Z.; Li, Z. M. Green production of covalently functionalized boron nitride nanosheets via saccharide-assisted mechanochemical exfoliation. ACS Sustainable Chem. Eng. 2021, 9, 11155–11162.
Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2020, 14, 2424–2431.
Liu, K.; Hu, J.; Kong, Z. Q.; Hu, J. W.; Tian, Z. S.; Hou, J. R.; Qin, J. L.; Liu, C. S.; Liang, S.; Wu, H. P. et al. High-yield, high-conductive graphene/nanocellulose hybrids prepared by co-exfoliation of low-oxidized expanded graphite and microfibrillated cellulose. Compos. Part B:Eng. 2021, 225, 109250.
Rizvi, R.; Nguyen, E. P.; Kowal, M. D.; Mak, W. H.; Rasel, S.; Islam, A.; Abdelaal, A.; Joshi, A. S.; Zekriardehani, S.; Coleman, M. R. et al. High-throughput continuous production of shear-exfoliated 2D layered materials using compressible flows. Adv. Mater. 2018, 30, 1800200.
Li, Z. L.; Young, R. J.; Backes, C.; Zhao, W.; Zhang, X.; Zhukov, A. A.; Tillotson, E.; Conlan, A. P.; Ding, F.; Haigh, S. J. et al. Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 2020, 14, 10976–10985.
Hu, C. X.; Shin, Y.; Read, O.; Casiraghi, C. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale 2021, 13, 460–484.
Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.
Bonaccorso, F.; Bartolotta, A.; Coleman, J. N.; Backes, C. 2D-crystal-based functional inks. Adv. Mater. 2016, 28, 6136–6166.
Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem., Int. Ed. 2011, 50, 10839–10842.
Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water. J. Phys. Chem. C 2011, 115, 2679–2685.
Marsh, K. L.; Souliman, M.; Kaner, R. B. Co-solvent exfoliation and suspension of hexagonal boron nitride. Chem. Commun. 2015, 51, 187–190.
Shen, J. F.; Wu, J. J.; Wang, M.; Dong, P.; Xu, J. X.; Li, X. G.; Zhang, X.; Yuan, J. H.; Wang, X. F.; Ye, M. X. et al. Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 2016, 12, 2741–2749.
Vega, C.; Noya, E. G. Revisiting the Frenkel-Ladd method to compute the free energy of solids: The Einstein molecule approach. J. Chem. Phys. 2007, 127, 154113.
Yang, L. S.; Wang, D. S.; Liu, M. S.; Liu, H. M.; Tan, J. Y.; Wang, Z. Y.; Zhou, H. Y.; Yu, Q. M.; Wang, J. Y.; Lin, J. H. et al. Glue-assisted grinding exfoliation of large-size 2D materials for insulating thermal conduction and large-current-density hydrogen evolution. Mater. Today 2021, 51, 145–154.
Luo, W.; Wang, Y. B.; Hitz, E.; Lin, Y.; Yang, B.; Hu, L. B. Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Adv. Funct. Mater. 2017, 27, 1701450.
Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.
Li, M.; Wang, M. J.; Hou, X.; Zhan, Z. L.; Wang, H.; Fu, H.; Lin, C. T.; Fu, L.; Jiang, N.; Yu, J. H. Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos. Part B: Eng. 2020, 184, 107746.
Wang, Z. G.; Liu, W.; Liu, Y. H.; Ren, Y.; Li, Y. P.; Zhou, L.; Xu, J. Z.; Lei, J.; Li, Z. M. Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. Part B: Eng. 2020, 180, 107569.
Cao, C. C.; Xue, Y. M.; Liu, Z. Y.; Zhou, Z.; Ji, J. W.; Song, Q. Q.; Hu, Q.; Fang, Y.; Tang, C. C. Scalable exfoliation and gradable separation of boric-acid-functionalized boron nitride nanosheets. 2D Mater. 2019, 6, 035014.
Wang, Z.; Zhu, Y. J.; Ji, D.; Li, Z. F.; Yu, H. B. Scalable exfoliation and high-efficiency separation membrane of boron nitride nanosheets. ChemistrySelect 2020, 5, 3567–3573.
Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849.
Deshmukh, A. R.; Jeong, J. W.; Lee, S. J.; Park, G. U.; Kim, B. S. Ultrasound-assisted facile green synthesis of hexagonal boron nitride nanosheets and their applications. ACS Sustainable Chem. Eng. 2019, 7, 17114–17125.
Wang, N.; Yang, G.; Wang, H. X.; Yan, C. Z.; Sun, R.; Wong, C. P. A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Mater. Today 2019, 27, 33–42.
Zhao, H. R.; Ding, J. H.; Shao, Z. Z.; Xu, B. Y.; Zhou, Q. B.; Yu, H. B. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers. ACS Appl. Mater. Interfaces 2019, 11, 37247–37255.
Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl. Sci. Rev. 2020, 7, 324–332.
Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu, B. L. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724.
Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J. C.; Contreras-García, J.; Hénon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 2017, 19, 17928–17936.
Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.
Kruse, H.; Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 2012, 136, 154101.
Miura, K.; Sasaki, N.; Kamiya, S. Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip. Phys. Rev. B 2004, 69, 075420.
Nachtigall, P.; Arean, C. O. Themed issue on characterization of adsorbed species. Phys. Chem. Chem. Phys. 2010, 12, 6307–6308.
Zhao, G.; Wu, Y. Z.; Shao, Y. L.; Hao, X. P. Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale 2016, 8, 5407–5411.
Wang, Z. G.; Lv, J. C.; Zheng, Z. L.; Du, J. G.; Dai, K.; Lei, J.; Xu, L.; Xu, J. Z.; Li, Z. M. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl. Mater. Interfaces 2021, 13, 25325–25333.
Wang, J. M.; Liu, D.; Li, Q. X.; Chen, C.; Chen, Z. Q.; Naebe, M.; Song, P. A.; Portehault, D.; Garvey, C. J.; Golberg, D. et al. Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 2021, 7, 219–225.
Ying, J. F.; Tan, X.; Lv, L.; Wang, X. Z.; Gao, J. Y.; Yan, Q. W.; Ma, H. B.; Nishimura, K.; Li, H.; Yu, J. H. et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.
Wang, Z. G.; Jin, Y. F.; Hong, R.; Du, J. G.; Dai, K.; Zhang, G. Q.; Gao, J. F.; Xu, L.; Xu, J. Z.; Li, Z. M. Dual-functional thermal management materials for highly thermal conduction and effectively heat generation. Compos. Part B: Eng. 2022, 242, 110084.
Guo, Q.; Wu, Z. Q.; He, H. H.; Zhou, H. H.; Liu, Y.; Chen, Y. H.; Liu, Z. G.; Gong, L.; Zhang, L. L.; Zhang, Q. Y. High-κ polyimide-based dielectrics by introducing a functionalized metal–organic framework. Inorg. Chem. 2022, 61, 3412–3419.
Chen, H.; Li, X. Q.; Yu, W. C.; Wang, J. Y.; Shi, Z. Q.; Xiong, C. X.; Yang, Q. L. Chitin/MoS2 nanosheet dielectric composite films with significantly enhanced discharge energy density and efficiency. Biomacromolecules 2020, 21, 2929–2937.
Gao, C. Q.; Shi, Y. Q.; Huang, R. Z.; Feng, Y. Z.; Chen, Y. J.; Zhu, S. C.; Lv, Y. C.; Shui, W.; Chen, Z. X. Creating multilayer-structured polystyrene composites for enhanced fire safety and electromagnetic shielding. Compos. Part B: Eng. 2022, 242, 110068.
Guo, Z. Z.; Ren, P. G.; Wang, J.; Tang, J. H.; Zhang, F. D.; Zong, Z.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding. Compos. Part B: Eng. 2022, 236, 109836.