Journal Home > Volume 16 , Issue 4

Isolated active metal atoms anchored on nitrogen-doped carbon matrix have been developed as the efficient catalyst for accelerating sluggish reaction kinetics of oxygen reduction reaction (ORR). The facile rational structure engineering with abundant isolated active metal atoms is highly desirable but challenging. Herein, we demonstrate that atomically dispersed Fe sites (Fe-N4 moieties) on the hierarchical porous nitrogen-doped carbon matrix (Fe-SA-PNC) for high ORR activity can be achieved by a dual-template assisted strategy. By thermal decomposition of NH4Cl template, the nitrogen-doped carbon matrix is generated based on the interaction with carbon precursor of citric acid. Meanwhile, the introduction of NaCl template facilitates the formation of hierarchical porous structures, which enable more active sites exposed and improve the mass transfer. Interestingly, the dual-template strategy can inhibit the formation of iron carbide nanoparticles (NPs) by generating porous structures and avoiding of the rapid loss of nitrogen during pyrolysis. The as-made Fe-SA-PNC catalysts with well-defined Fe-N4 active sites exhibit highly efficient ORR activity with a half-wave potential of 0.838 V versus the reversible hydrogen electrode, as well as good stability and methanol tolerance, outperforming the commercial Pt/C. The zinc-air battery (ZAB) constructed by Fe-SA-PNC also shows a higher peak power density and specific discharging capacity than that of Pt-based ZAB. The present work provides the facile strategy for tailoring nitrogen doping and porous structures simultaneously to prevent the formation NPs for achieving the well-dispersed and accessible single-atom active sites, paving a new way to design efficient electrocatalysts for ORR in fuel cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Template-assisted formation of atomically dispersed iron anchoring on nitrogen-doped porous carbon matrix for efficient oxygen reduction

Show Author's information Ruoyu Pang1,2,§Hongyin Xia1,2,§Jing Li1,2( )Erkang Wang1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

§ Ruoyu Pang and Hongyin Xia contributed equally to this work.

Abstract

Isolated active metal atoms anchored on nitrogen-doped carbon matrix have been developed as the efficient catalyst for accelerating sluggish reaction kinetics of oxygen reduction reaction (ORR). The facile rational structure engineering with abundant isolated active metal atoms is highly desirable but challenging. Herein, we demonstrate that atomically dispersed Fe sites (Fe-N4 moieties) on the hierarchical porous nitrogen-doped carbon matrix (Fe-SA-PNC) for high ORR activity can be achieved by a dual-template assisted strategy. By thermal decomposition of NH4Cl template, the nitrogen-doped carbon matrix is generated based on the interaction with carbon precursor of citric acid. Meanwhile, the introduction of NaCl template facilitates the formation of hierarchical porous structures, which enable more active sites exposed and improve the mass transfer. Interestingly, the dual-template strategy can inhibit the formation of iron carbide nanoparticles (NPs) by generating porous structures and avoiding of the rapid loss of nitrogen during pyrolysis. The as-made Fe-SA-PNC catalysts with well-defined Fe-N4 active sites exhibit highly efficient ORR activity with a half-wave potential of 0.838 V versus the reversible hydrogen electrode, as well as good stability and methanol tolerance, outperforming the commercial Pt/C. The zinc-air battery (ZAB) constructed by Fe-SA-PNC also shows a higher peak power density and specific discharging capacity than that of Pt-based ZAB. The present work provides the facile strategy for tailoring nitrogen doping and porous structures simultaneously to prevent the formation NPs for achieving the well-dispersed and accessible single-atom active sites, paving a new way to design efficient electrocatalysts for ORR in fuel cells.

Keywords: oxygen reduction reaction, zinc-air battery, template-assistance strategy, nitrogen-doped porous carbon matrix, single-atom Fe catalyst

References(48)

[1]

Motagamwala, A. H.; Dumesic, J. A. Microkinetic modeling: A tool for rational catalyst design. Chem. Rev. 2021, 121, 1049–1076.

[2]

Xiao, F.; Wang, Y. C.; Wu, Z. P.; Chen, G. Y.; Yang, F.; Zhu, S. Q.; Siddharth, K.; Kong, Z. J.; Lu, A. L.; Li, J. C. et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 2021, 33, 2006292.

[3]

Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313–2339.

[4]

Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

[5]

Wang, G. Z.; Yang, Z. Z.; Du, Y. G.; Yang, Y. Programmable exposure of Pt active facets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 15848–15854.

[6]

Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 1163–1167.

[7]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[8]

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

[9]

Zhang, L. Z.; Fischer, J. M. T. A.; Jia, Y.; Yan, X. C.; Xu, W.; Wang, X. Y.; Chen, J.; Yang, D. J.; Liu, H. W.; Zhuang, L. Z. et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.

[10]

Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926–2932.

[11]

Gao, R. J.; Wang, J.; Huang, Z. F.; Zhang, R. R.; Wang, W.; Pan, L.; Zhang, J. F.; Zhu, W. K.; Zhang, X. W.; Shi, C. X. et al. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 2021, 6, 614–623.

[12]

Wei, X. Q.; Song, S. J.; Wu, N. N.; Luo, X.; Zheng, L. R.; Jiao, L.; Wang, H. J.; Fang, Q.; Hu, L. Y.; Gu, W. L. et al. Synergistically enhanced single-atomic site Fe by Fe3C@C for boosted oxygen reduction in neutral electrolyte. Nano Energy 2021, 84, 105840.

[13]

Cheng, X. Y.; Yang, J.; Yan, W.; Han, Y.; Qu, X. M.; Yin, S. H.; Chen, C.; Ji, R. Y.; Li, Y. R.; Li, G. et al. Nano-geometric deformation and synergistic Co nanoparticles-Co-N4 composite sites for proton exchange membrane fuel cells. Energy Environ. Sci. 2021, 14, 5958–5967.

[14]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[15]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[16]

Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.

[17]

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

[18]

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

[19]

Miao, Z. P.; Wang, X. M.; Zhao, Z. L.; Zuo, W. B.; Chen, S. Q.; Li, Z. Q.; He, Y. H.; Liang, J. S.; Ma, F.; Wang, H. L. et al. Improving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel cells through M–N bond length and coordination regulation. Adv. Mater. 2021, 33, 2006613.

[20]

Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.

[21]

Xu, H.; Wang, D.; Yang, P. X.; Du, L.; Lu, X. Y.; Li, R. P.; Liu, L. L.; Zhang, J. Q.; An, M. Z. A hierarchically porous Fe-N-C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in zinc-air battery. Appl. Catal. B: Environ. 2022, 305, 121040.

[22]

Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

[23]

Xiao, F.; Xu, G. L.; Sun, C. J.; Xu, M. J.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S. Q.; Li, Y. Y.; Wei, Z. D. et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 2019, 61, 60–68.

[24]

Meng, Z. H.; Chen, N.; Cai, S. C.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.

[25]

Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

[26]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[27]

Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

[28]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[29]

Wang, X.; Jia, Y.; Mao, X.; Liu, D. B.; He, W. X.; Li, J.; Liu, J. G.; Yan, X. C.; Chen, J.; Song, L. et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.

[30]

Hu, Q.; Li, G. M.; Li, G. D.; Liu, X. F.; Zhu, B.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn-air batteries. Adv. Energy Mater. 2019, 9, 1803867.

[31]

Xia, H. Y.; Zhang, S.; Zhu, X. Q.; Xing, H. H.; Xue, Y.; Huang, B. L.; Sun, M. Z.; Li, J.; Wang, E. K. Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers. J. Mater. Chem. A 2020, 8, 18125–18131.

[32]

Hou, K.; Sun, Z.; Liu, Y.; Guan, L. H. A NH4Cl-NaCl mixed salts assisted pyrolysis route for preparation of a high performance Fe/N/C oxygen reduction reaction catalyst. Inorg. Chem. Front. 2020, 7, 2932–2940.

[33]

Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.

[34]

Jiang, M.; Wang, F.; Yang, F.; He, H.; Yang, J.; Zhang, W.; Luo, J. Y.; Zhang, J.; Fu, C. P. Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 2022, 93, 106793.

[35]

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

[36]

Xu, Y. S.; Zhu, L. P.; Cui, X. X.; Zhao, M. Y.; Li, Y. L.; Chen, L. L.; Jiang, W. C.; Jiang, T.; Yang, S. G.; Wang, Y. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752–758.

[37]

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.

[38]

Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, 202116068.

[39]

Xie, X. Y.; Shang, L.; Xiong, X. Y.; Shi, R.; Zhang, T. R. Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102688.

[40]

Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.

[41]

Zhang, X. Y.; Zhang, S.; Yang, Y.; Wang, L. G.; Mu, Z. J.; Zhu, H. S.; Zhu, X. Q.; Xing, H. H.; Xia, H. Y.; Huang, B. L. et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv. Mater. 2020, 32, 1906905.

[42]

Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333.

[43]

Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D Carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

[44]

Zhao, R.; Liang, Z. B.; Gao, S.; Yang, C.; Zhu, B. J.; Zhao, J. L.; Qu, C.; Zou, R. Q.; Xu, Q. Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew. Chem., Int. Ed. 2019, 58, 1975–1979.

[45]

Shi, F. L.; Peng, J. H.; Li, F.; Qian, N. K.; Shan, H.; Tao, P.; Song, C. Y.; Shang, W.; Deng, T.; Zhang, H. et al. Design of highly durable core–shell catalysts by controlling shell distribution guided by in-situ corrosion study. Adv. Mater. 2021, 33, 2101511.

[46]

Hu, C. G.; Dai, L. M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 2017, 29, 1604942.

[47]

Gong, S. P.; Wang, C. L.; Jiang, P.; Hu, L.; Lei, H.; Chen, Q. W. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J. Mater. Chem. A 2018, 6, 13254–13262.

[48]

Liu, F.; Shi, L.; Song, S. F.; Ge, K.; Zhang, X. P.; Guo, Y. C.; Liu, D. Simultaneously engineering the coordination environment and pore architecture of metal-organic framework-derived single-atomic iron catalysts for ultraefficient oxygen reduction. Small 2021, 17, 2102425.

File
12274_2022_5122_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 July 2022
Revised: 07 September 2022
Accepted: 30 September 2022
Published: 05 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

R. Y. P., H. Y. X, J. L., and E. K. W. are funded by the Youth Innovation Promotion Association CAS (No. 202055) and the National Key R&D Program of China (Nos. 2019YFA0709202 and 2020YFB2009004). The authors thank Shanghai Synchrotron Radiation Facility for support with X-ray absorption spectroscopy (XAS) measurements. R. Y. P. and H. Y. X. thank Xinyang Zhu, Chao Peng, and Yuan Xue for their help.

Return