AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage

Junyi Yin1,§Pengqi Hai2,§Yuan Gao1Zihan Gan1Chao Wu2( )Yonghong Cheng1( )Xin Xu1( )
State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

§ Junyi Yin and Pengqi Hai contributed equally to this work.

Show Author Information

Graphical Abstract

Theory-driven designed TiO2@MoO2 heterojunction with balanced crystallinity and nanostructure brings about favorable kinetics and high-rate sodium ion storage.

Abstract

Sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage due to their cost effectiveness and the unlimited availability of sodium. However, there remains a need for the rational design of better anodic materials than are currently available, as these materials are critical for the sodium-ion storage process. In this work, theoretical calculations were performed to design a conceptually novel TiO2@MoO2 heterojunction (TMH) anode that was expected to exhibit better electrochemical performance than current anodes. The TMH anode was fabricated via a facile and cost–effective method, and the results of in-depth sodium-ion-storage performance and reaction kinetics analyses indicate that it exhibited an excellent rate capability and enhanced pseudocapacitive response, due to its high crystallinity. This electrochemical performance was superior to that of previously reported anodic materials, confirming the accuracy of the theoretical calculations. Destruction of TMH’s nanostructure at high temperatures resulted in a decrease in its electrochemical performance, indicating the key role played by the nanostructure in TMH’s ability to store sodium ions. This study demonstrates that integration of theoretical predictions with experimental investigations offers insights into how materials’ crystallinity and nanostructure affect their pseudocapacitive sodium-ion storage capabilities, which will help to guide the rational design of effective anodic materials for SIBs.

Electronic Supplementary Material

Download File(s)
12274_2022_5120_MOESM1_ESM.pdf (1.3 MB)
12274_2022_5120_MOESM2_ESM.pdf (1.1 MB)

References

[1]

Chiang, Y. M. Building a better battery: Controlling the charge-induced morphological changes of electrode materials may provide a route to improved battery performance. Science 2010, 330, 1485–1486.

[2]

Sun, Y. M.; Liu, N. A.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

[3]

Zhou, H. S. New energy storage devices for post lithium-ion batteries. Energy Environ. Sci. 2013, 6, 2256.

[4]

Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

[5]

Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

[6]

Lu, X. C.; Li, G. S.; Kim, J. Y.; Mei, D. H.; Lemmon, J. P.; Sprenkle, V. L.; Liu, J. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat. Commun. 2014, 5, 4578.

[7]

Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

[8]

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

[9]

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

[10]

Liang, Y. Z.; Song, N.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, 2202673.

[11]

Huang, M.; Chu, Y. T.; Xi, B. J.; Shi, N. X.; Duan, B.; Zhang, C. H.; Chen, W. H.; Feng, J. K.; Xiong, S. L. TiO2-based heterostructures with different mechanism: A general synergistic effect toward high-performance sodium storage. Small 2020, 16, 2004054.

[12]

Yang, F. H.; Hao, J. N.; Long, J.; Liu, S. L.; Zheng, T.; Lie, W.; Chen, J.; Guo, Z. P. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv. Energy Mater. 2021, 11, 2003346.

[13]

Hao, J. N.; Zhang, J.; Xia, G. L.; Liu, Y. J.; Zheng, Y.; Zhang, W. C.; Tang, Y. B.; Pang, W. K.; Guo, Z. P. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018, 12, 10430–10438.

[14]

Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem. 2016, 128, 3469–3474.

[15]

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

[16]

Deng, C. J.; Lau, M. L.; Ma, C. R.; Skinner, P.; Liu, Y. Z.; Xu, W. Q.; Zhou, H.; Zhang, X. H.; Wu, D.; Yin, Y. D. et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A 2020, 8, 3333–3343.

[17]

Xu, X.; Chen, B.; Hu, J. P.; Sun, B. W.; Liang, X. H.; Li, N.; Yang, S. Y. A.; Zhang, H.; Huang, W.; Yu, T. Heterostructured TiO2 spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage. Adv. Mater. 2019, 31, 1904589.

[18]

Xu, X.; Zhao, R. S.; Ai, W.; Chen, B.; Du, H. F.; Wu, L. S.; Zhang, H.; Huang, W.; Yu, T. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 2018, 30, 1800658.

[19]

Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 2016, 10, 10211–10219.

[20]

Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

[21]

Shen, L. F.; Wang, Y.; Lv, H. F.; Chen, S. Q.; van Aken, P. A.; Wu, X. J.; Maier, J.; Yu, Y. Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv. Mater. 2018, 30, 1804378.

[22]

Xia, C.; Lin, Z. F.; Zhou, Y. G.; Zhao, C.; Liang, H. F.; Rozier, P.; Wang, Z. G.; Alshareef, H. N. Large intercalation pseudocapacitance in 2D VO2 (B): Breaking through the kinetic barrier. Adv. Mater. 2018, 30, 1803594.

[23]

Deng, Q. L.; Chen, F.; Liu, S.; Bayaguud, A.; Feng, Y. Z.; Zhang, Z. B.; Fu, Y. P.; Yu, Y.; Zhu, C. B. Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 2020, 30, 1908665.

[24]

Liu, P. G.; Liu, W. F.; Huang, Y. P.; Li, P. L.; Yan, J.; Liu, K. Y. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020, 25, 858–865.

[25]

Jiang, J. X.; Yang, W. L.; Wang, H.; Zhao, Y.; Guo, J.; Zhao, J. Q.; Beidaghi, M.; Gao, L. J. Electrochemical performances of MoO2/C nanocomposite for sodium ion storage: An insight into rate dependent charge/discharge mechanism. Electrochim. Acta 2017, 240, 379–387.

[26]

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

[27]

Zhao, C. T.; Yu, C.; Zhang, M. D.; Huang, H. W.; Li, S. F.; Han, X. T.; Liu, Z. B.; Yang, J.; Xiao, W.; Liang, J. N. et al. Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 2017, 7, 1602880.

[28]

Takami, N.; Satoh, A.; Hara, M.; Ohsaki, I. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 1995, 142, 371–379.

[29]

Zhou, M.; Xu, Y.; Xiang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater. 2016, 6, 1600448.

[30]

Yang, X. M.; Wang, C.; Yang, Y. C.; Zhang, Y.; Jia, X. N.; Chen, J.; Ji, X. B. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes. J. Mater. Chem. A 2015, 3, 8800–8807.

[31]

Li, B. S.; Xi, B. J.; Feng, Z. Y.; Lin, Y.; Liu, J. C.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 2018, 30, 1705788.

[32]

Zhang, Y.; Ding, Z. Y.; Foster, C. W.; Banks, C. E.; Qiu, X. Q.; Ji, X. B. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 2017, 27, 1700856.

[33]

Hwang, J. Y.; Du, H. L.; Yun, B. N.; Jeong, M. G.; Kim, J. S.; Kim, H.; Jung, H. G.; Sun, Y. K. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 2019, 4, 494–501.

[34]

Chen, B.; Meng, Y. H.; Xie, F. X.; He, F.; He, C. N.; Davey, K.; Zhao, N. Q.; Qiao, S. Z. 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries. Adv. Mater. 2018, 30, 1804116.

[35]

Zhang, Y.; Foster, C. W.; Banks, C. E.; Shao, L. D.; Hou, H. S.; Zou, G. Q.; Chen, J.; Huang, Z. D.; Ji, X. B. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium Storage. Adv. Mater. 2016, 28, 9391–9399.

[36]

Cha, G.; Mohajernia, S.; Nguyen, N. T.; Mazare, A.; Denisov, N.; Hwang, I.; Schmuki, P. Li+ pre-insertion leads to formation of solid electrolyte interface on TiO2 nanotubes that enables high-performance anodes for sodium ion batteries. Adv. Energy Mater. 2020, 10, 1903448.

[37]

Li, Q. W.; Wang, H.; Tang, X. F.; Zhou, M.; Zhao, H. P.; Xu, Y.; Xiao, W.; Lei, Y. Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. Adv. Funct. Mater. 2021, 31, 2101081.

[38]

Li, B. S.; Xi, B. J.; Wu, F. F.; Mao, H. Z.; Liu, J.; Feng, J. K.; Xiong, S. L. One-step in situ formation of N-doped carbon nanosheet 3D porous networks/TiO2 hybrids with ultrafast sodium storage. Adv. Energy Mater. 2019, 9, 1803070.

[39]
Liu, Y.; Wang, S. C.; Sun, X.; Zhang, J. Y.; Zaman, F. U.; Hou, L. R.; Yuan, C. Z. Sub-nanoscale engineering of MoO2 clusters for enhanced sodium storage. Energy Environ. Mater., in press, https://ddoi.org/10.1002/eem2.12263.
[40]

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

[41]

Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

[42]

Conway, B. E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14.

[43]

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

[44]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[45]

Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.

Nano Research
Pages 4941-4949
Cite this article:
Yin J, Hai P, Gao Y, et al. Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage. Nano Research, 2023, 16(4): 4941-4949. https://doi.org/10.1007/s12274-022-5120-x
Topics:

5657

Views

11

Crossref

12

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 17 July 2022
Revised: 28 September 2022
Accepted: 29 September 2022
Published: 08 November 2022
© Tsinghua University Press 2022
Return