Journal Home > Volume 16 , Issue 4

Monolithic catalysts play a crucial role in various catalytic applications, e.g., chemical synthesis, energy conversion, and environmental treatment, but their catalytic efficiency is often limited by the restricted mass transfer and insufficient exposure of active sites. Herein, we present a dual-templating strategy to fabricate atomic Pt dispersed on monolithic N-doped mesoporous carbon nanowires (Pt1/NMCW) with abundant super-/macropores, which, as monolithic catalyst, exhibits high catalytic performance in hydrogenation of 4-nitrophenol (4-NP). During synthesis, triblock copolymer (Pluronic F127) is employed as a primary soft template to generate the mesoporous structured carbon nanowires to improve the accessibility of Pt single sites; KCl crystallite is used as a secondary hard template to create the super-/macropores, which are beneficial for enhancing the mass transfer efficiency. Thanks to the dual-templating strategy that creates the monolithic carbon nanowires with hierarchically porous structure, the obtained Pt1/NMCW shows highly enhanced catalytic activity in 4-NP hydrogenation, outperforming its analogue synthesized without using KCl as template and being comparable to the nano-powder catalyst (i.e., atomic Pt loaded on the N-doped carbon nanospheres, Pt1/NCS).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomic Pt anchored on hierarchically porous monolithic carbon nanowires as high-performance catalyst for liquid hydrogenation

Show Author's information Zhengbin Tian1,2Xiaohui Deng1Ping He1Guang-Hui Wang1,2( )
Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
University of Chinese Academy of Sciences, 100049 Beijing, China

Abstract

Monolithic catalysts play a crucial role in various catalytic applications, e.g., chemical synthesis, energy conversion, and environmental treatment, but their catalytic efficiency is often limited by the restricted mass transfer and insufficient exposure of active sites. Herein, we present a dual-templating strategy to fabricate atomic Pt dispersed on monolithic N-doped mesoporous carbon nanowires (Pt1/NMCW) with abundant super-/macropores, which, as monolithic catalyst, exhibits high catalytic performance in hydrogenation of 4-nitrophenol (4-NP). During synthesis, triblock copolymer (Pluronic F127) is employed as a primary soft template to generate the mesoporous structured carbon nanowires to improve the accessibility of Pt single sites; KCl crystallite is used as a secondary hard template to create the super-/macropores, which are beneficial for enhancing the mass transfer efficiency. Thanks to the dual-templating strategy that creates the monolithic carbon nanowires with hierarchically porous structure, the obtained Pt1/NMCW shows highly enhanced catalytic activity in 4-NP hydrogenation, outperforming its analogue synthesized without using KCl as template and being comparable to the nano-powder catalyst (i.e., atomic Pt loaded on the N-doped carbon nanospheres, Pt1/NCS).

Keywords: hydrogenation, dual-templating strategy, monolithic catalysts, porous carbon nanowires, Pt single atoms

References(60)

[1]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[2]

Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

[3]

Yang, H. Q.; Chen, Z. W.; Kou, S. Q.; Lu, G. L.; Chen, D. H.; Liu, Z. N. Carbon-supported catalysts with atomically dispersed metal sites for oxygen electroreduction: Present and future perspectives. J. Mater. Chem. A 2021, 9, 15919–15936.

[4]

Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

[5]

Wang, H. L.; Wang, X.; Pan, J.; Zhang, L. L.; Zhao, M.; Xu, J.; Liu, B.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem., Int. Ed. 2021, 60, 23154–23158.

[6]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[7]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[8]

Pan, Y.; Ma, X. L.; Wang, M. M.; Yang, X.; Liu, S. J.; Chen, H. C.; Zhuang, Z. W.; Zhang, Y. H.; Cheong, W. C.; Zhang, C. et al. Construction of N, P co-doped carbon frames anchored with Fe single atoms and Fe2P nanoparticles as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2203621.

[9]

Zhang, H. B.; Zhou, W.; Lu, X. F.; Chen, T.; Lou, X. W. Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 2020, 10, 2000882.

[10]

Li, Y. X.; Zhang, S. L.; Cheng, W. R.; Chen, Y.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO2 electroreduction. Adv. Mater. 2022, 34, 2105204.

[11]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[12]

Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.

[13]

Zhang, J. F.; Zhang, H. J.; Wu, Y. M.; Liu, C. B.; Huang, Y.; Zhou, W.; Zhang, B. Single-atom catalysts for thermal- and electro-catalytic hydrogenation reactions. J. Mater. Chem. A 2022, 10, 5743–5757.

[14]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[15]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[16]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[17]

Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

[18]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[19]

Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. E. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

[20]

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

[21]

Xia, C.; Qiu, Y. R.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z. Y.; Kim, J. Y.; Cullen, D. A.; Zheng, D. X. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894.

[22]

Zou, L. L.; Wei, Y. S.; Hou, C. C.; Li, C. X.; Xu, Q. Single-atom catalysts derived from metal–organic frameworks for electrochemical applications. Small 2021, 17, 2004809.

[23]

Ye, C. W.; Xu, L. Recent advances in the design of a high performance metal-nitrogen-carbon catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 22218–22247.

[24]

Tian, Z. B.; Wang, W. Q.; Zheng, Y.; Wang, G. H. A confined thermal transformation strategy to synthesize single atom catalysts supported on nitrogen-doped mesoporous carbon nanospheres for selective hydrogenation. J. Mater. Chem. A 2021, 9, 25488–25494.

[25]

He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

[26]

Liu, Y. W.; Wu, X.; Li, Z.; Zhang, J.; Liu, S. X.; Liu, S. J.; Gu, L.; Zheng, L. R.; Li, J.; Wang, D. S. et al. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat. Commun. 2021, 12, 4205.

[27]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[28]

Li, Y. X.; Lu, X. F.; Xi, S. B.; Luan, D. Y.; Wang, X.; Lou, X. W. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202201491.

[29]

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

[30]

Wu, Y. L.; Li, X. F.; Wei, Y. S.; Fu, Z. M.; Wei, W. B.; Wu, X. T.; Zhu, Q. L.; Xu, Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 2021, 33, 2006965.

[31]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[32]

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal–organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

[33]

Yu, N. F.; Chen, H.; Kuang, J. B.; Bao, K. L.; Yan, W.; Ye, J. L.; Yang, Z. T.; Huang, Q. H.; Wu, Y. P.; Sun, S. G. Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Res. 2022, 15, 7209–7219.

[34]

Fu, X. Z.; Zhang, P. P.; Sun, T. T.; Xu, L. B.; Gong, L.; Chen, B. T.; Xu, Q. M.; Zheng, T. Y.; Yu, Z. H.; Chen, X. et al. Atomically dispersed Ni-N3 sites on highly defective micro-mesoporous carbon for superior CO2 electroreduction. Small 2022, 18, 2107997.

[35]

Tian, Z. B.; Dong, C.; Yu, Q.; Ye, R. P.; Duyar, M. S.; Liu, J.; Jiang, H. Q.; Wang, G. H. A universal nanoreactor strategy for scalable supported ultrafine bimetallic nanoparticles synthesis. Mater. Today 2020, 40, 72–81.

[36]

Pirmoradi, M.; Janulaitis, N.; Gulotty, R. J. Jr.; Kastner, J. R. Continuous hydrogenation of aqueous furfural using a metal-supported activated carbon monolith. ACS Omega 2020, 5, 7836–7849.

[37]

Zhao, Q.; Zheng, Y. F.; Song, C. F.; Liu, Q. L.; Ji, N.; Ma, D. G.; Lu, X. B. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl. Catal. B:Environ. 2020, 265, 118552.

[38]

Zha, K. W.; Sun, W. J.; Huang, Z.; Xu, H. L.; Shen, W. Insights into high-performance monolith catalysts of Co3O4 nanowires grown on nickel foam with abundant oxygen vacancies for formaldehyde oxidation. ACS Catal. 2020, 10, 12127–12138.

[39]

Pan, Q. H.; Gao, Q.; Gao, G. M.; Liu, M. Y.; Han, B.; Xia, K. S.; Zhou, C. G. Composition-engineered LaCoO3-based monolithic catalysts for easily operational and robust peroxymonosulfate activation. Chem. Eng. J. 2021, 424, 130574.

[40]

Luo, R.; Liu, C.; Li, J. S.; Wang, C. H.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Convenient synthesis and engineering of ultrafine Co3O4-incorporated carbon composite: Towards practical application of environmental remediation. J. Mater. Chem. A 2018, 6, 3454–3461.

[41]

Wang, C.; Qi, L. M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 17219–17224.

[42]

Liu, H.; Liu, Y. Y.; Mehdi, S.; Wu, X. L.; Liu, T.; Zhou, B. J.; Zhang, P. X.; Jiang, J. C.; Li, B. J. Surface phosphorus-induced CoO coupling to monolithic carbon for efficient air electrode of quasi-solid-state Zn-air batteries. Adv. Sci. 2021, 8, 2101314.

[43]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[44]

Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

[45]

Lawson, S.; Li, X.; Thakkar, H.; Rownaghi, A. A.; Rezaei, F. Recent advances in 3D printing of structured materials for adsorption and catalysis applications. Chem. Rev. 2021, 121, 6246–6291.

[46]

Zhang, H. J.; Lin, C.; Han, T.; Du, F. P.; Zhao, Y. H.; Li, X. P.; Sun, Y. H. Visualization of the formation and 3D porous structure of Ag doped MnO2 aerogel monoliths with high photocatalytic activity. ACS Sustain. Chem. Eng. 2016, 4, 6277–6287.

[47]

Lan, L. H.; Yang, W.; Li, J.; Zhang, L.; Fu, Q.; Liao, Q. Membrane-less direct formate fuel cell using an Fe-N-doped bamboo internode as the binder-free and monolithic air-breathing cathode. ACS Appl. Mater. Interfaces 2020, 12, 27095–27103.

[48]

Wan, W. C.; Zhang, R. Y.; Ma, M. Z.; Zhou, Y. Monolithic aerogel photocatalysts: A review. J. Mater. Chem. A 2018, 6, 754–775.

[49]

Liu, X. M.; Lim, G. J. H.; Wang, Y. X.; Zhang, L.; Mullangi, D.; Wu, Y.; Zhao, D.; Ding, J.; Cheetham, A. K.; Wang, J. Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. Chem. Eng. J. 2021, 403, 126333.

[50]

Lu, X. X.; Tang, W. X.; Li, M. L.; Dang, Y. L.; Campbell, N.; Li, Z. H.; Suib, S. L.; Gao, P. X. Mass transport in nanoarray monolithic catalysts: An experimental-theory study. Chem. Eng. J. 2021, 405, 126906.

[51]

Zhang, Y. B.; Qian, C.; Duan, J. C.; Liang, Y. D.; Luo, J. J.; Han, Y. X.; Hu, J. L.; Shi, F. W. Synthesis of HKUST-1 embedded in SBA-15 functionalized with carboxyl groups as a catalyst for 4-nitrophenol to 4-aminophenol. Appl. Surf. Sci. 2022, 573, 151558.

[52]

Liu, J. Y.; Yu, H. J.; Wang, L. Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal–organic framework nanosheets. Appl. Catal. A: Gen. 2020, 599, 117605.

[53]

Hu, L. L.; Peng, F.; Xia, D. H.; He, H. J. W.; He, C.; Fang, Z. K.; Yang, J. L.; Tian, S. H.; Sharma, V. K.; Shu, D. Carbohydrates-derived nitrogen-doped hierarchical porous carbon for ultrasensitive detection of 4-nitrophenol. ACS Sustain. Chem. Eng. 2018, 6, 17391–17401.

[54]

Kubendhiran, S.; Sakthivel, R.; Chen, S. M.; Mutharani, B.; Chen, T. W. Innovative strategy based on a novel carbon-black-β-cyclodextrin nanocomposite for the simultaneous determination of the anticancer drug flutamide and the environmental pollutant 4-nitrophenol. Anal. Chem. 2018, 90, 6283–6291.

[55]

Lu, S. L.; Hu, Y. M.; Wan, S.; McCaffrey, R.; Jin, Y. H.; Gu, H. W.; Zhang, W. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J. Am. Chem. Soc. 2017, 139, 17082–17088.

[56]

Xu, Y. L.; Shi, X. F.; Hua, R.; Zhang, R.; Yao, Y. J.; Zhao, B.; Liu, T.; Zheng, J. Z.; Lu, G. Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Appl. Catal. B: Environ. 2020, 260, 118142.

[57]

Yue, Q.; Li, J. L.; Zhang, Y.; Cheng, X. W.; Chen, X.; Pan, P. P.; Su, J. C.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. et al. Plasmolysis-inspired nanoengineering of functional yolk–shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc. 2017, 139, 15486–15493.

[58]

Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.

[59]

Wang, C. L.; Ciganda, R.; Yate, L.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D. RhAg/rGO nanocatalyst: Ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol. J. Mater. Sci. 2017, 52, 9465–9476.

[60]

Strachan, J.; Barnett, C.; Masters, A. F.; Maschmeyer, T. 4-nitrophenol reduction: Probing the putative mechanism of the model reaction. ACS Catal. 2020, 10, 5516–5521.

File
12274_2022_5118_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 July 2022
Revised: 28 September 2022
Accepted: 29 September 2022
Published: 24 October 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21872159), SEI (No. SEI I202134), and QIBEBT (No. QIBEBT ZZBS201802).

Return