Journal Home > Volume 16 , Issue 4

The electrochemical N2 reduction reaction (NRR) represents a green and sustainable route for NH3 synthesis under ambient conditions. However, the mechanism of N2 activation in the electrocatalytic NRR remains unclear. Herein, we found that the high spin state Mn3+-Mn3+ pairs induced by oxygen vacancy in MnO2 nanosheets greatly enhance the catalytic activities. The strong electron transfer between d orbital of Mn and orbital of N2 forces the N2 to be of radical nature, which activates the hydrogenation process and weakens the N≡N bond. Based on the density functional theory (DFT) calculation results, we precisely designed mesoporous MnO2 nanosheets with rich oxygen vacancies via using methyltriphenylphosphonium bromide (MPB) to induce more Mn3+-Mn3+ pairs (Mn3-3-MnO2), which can achieve a fairly high ammonia yield of up to 147.2 µg·h−1·mgcat−1. at −0.75 V vs. reversible hydrogen electrode (RHE) and a high Faradaic efficiency (FE) of 11%. Furthermore, these mesoporous MnO2 nanosheets exhibit the superior durability with negligible changes in both NH3 yield and FE after a consecutive 6-recycle test and the current density electrolyzed over a 24-hour period. Our findings offer an approach to designing highly active transition metal catalysts for electrocatalytic nitrogen reduction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous MnO2 nanosheets for efficient electrocatalytic nitrogen reduction via high spin polarization induced by oxygen vacancy

Show Author's information Yangyang Wen1,§Jiahao Liu1,§Feiran Zhang2Zhenxing Li1( )Ping Wang1Zhao Fang1Miao He1Jingshuai Chen3Weiyu Song2( )Rui Si4( )Lianzhou Wang5( )
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
College of Science, China University of Petroleum (Beijing), Beijing 102249, China
School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

§ Yangyang Wen and Jiahao Liu contributed equally to this work.

Abstract

The electrochemical N2 reduction reaction (NRR) represents a green and sustainable route for NH3 synthesis under ambient conditions. However, the mechanism of N2 activation in the electrocatalytic NRR remains unclear. Herein, we found that the high spin state Mn3+-Mn3+ pairs induced by oxygen vacancy in MnO2 nanosheets greatly enhance the catalytic activities. The strong electron transfer between d orbital of Mn and orbital of N2 forces the N2 to be of radical nature, which activates the hydrogenation process and weakens the N≡N bond. Based on the density functional theory (DFT) calculation results, we precisely designed mesoporous MnO2 nanosheets with rich oxygen vacancies via using methyltriphenylphosphonium bromide (MPB) to induce more Mn3+-Mn3+ pairs (Mn3-3-MnO2), which can achieve a fairly high ammonia yield of up to 147.2 µg·h−1·mgcat−1. at −0.75 V vs. reversible hydrogen electrode (RHE) and a high Faradaic efficiency (FE) of 11%. Furthermore, these mesoporous MnO2 nanosheets exhibit the superior durability with negligible changes in both NH3 yield and FE after a consecutive 6-recycle test and the current density electrolyzed over a 24-hour period. Our findings offer an approach to designing highly active transition metal catalysts for electrocatalytic nitrogen reduction.

Keywords: ammonia synthesis, mesopores, Mn3+-Mn3+ pair, MnO2 nanosheets, electrocatalytic nitrogen reduction.

References(47)

[1]

Sun, S. C.; Shen, G. Q.; Jiang, J. W.; Mi, W. B.; Liu, X. L.; Pan, L.; Zhang, X. W.; Zou, J. J. Boosting oxygen evolution kinetics by Mn-N-C motifs with tunable spin state for highly efficient solar-driven water splitting. Adv. Energy Mater. 2019, 9, 1901505.

[2]

Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418.

[3]

Chen, S. C.; Kang, Z. X.; Hu, X.; Zhang, X. D.; Wang, H.; Xie, J. F.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv. Mater. 2017, 29, 1701687.

[4]

Sun, Y. L.; Wang, J.; Liu, Q.; Xia, M. R.; Tang, Y. F.; Gao, F. M.; Hou, Y. L.; Tse, J.; Zhao, Y. F. Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175–27185.

[5]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[6]

Pan, H. P.; Jiang, X. X.; Wang, X. K.; Wang, Q. L.; Wang, M. K.; Shen, Y. Effective magnetic field regulation of the radical pair spin states in electrocatalytic CO2 reduction. J. Phys. Chem. Lett. 2020, 11, 48–53.

[7]

Yang, Y. Y.; Zhang, L. F.; Hu, Z. P.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R. G.; Qiu, K. W.; Mao, J.; Ling, T. et al. The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 4525–4531.

[8]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

[9]

Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.

[10]

Utomo, W. P.; Wu, H.; Ng, Y. H. Modulating the active sites of oxygen-deficient TiO2 by copper loading for enhanced electrocatalytic nitrogen reduction to ammonia. Small 2022, 18, 2200996.

[11]

Liu, G. H.; Niu, L. J.; Ma, Z. X.; An, L.; Qu, D.; Wang, D. D.; Wang, X. Y.; Sun, Z. C. Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions. Nano Res. 2022, 15, 5940–5945.

[12]

Fang, C.; An, W. Single-metal-atom site with high-spin state embedded in defective BN nanosheet promotes electrocatalytic nitrogen reduction. Nano Res. 2021, 14, 4211–4219.

[13]

Li, Q. Q.; Song, L. P.; Liang, Z.; Sun, M. Z.; Wu, T.; Huang, B. L.; Luo, F.; Du, Y. P.; Yan, C. H. A review on CeO2-based electrocatalyst and photocatalyst in energy conversion. Adv. Energy Sustainability Res. 2021, 2, 2170004.

[14]

Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Communs. 2019, 10, 341.

[15]

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

[16]

Liu, X.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Isolated boron sites for electroreduction of dinitrogen to ammonia. ACS Catal. 2020, 10, 1847–1854.

[17]

Zhang, W. Q.; Mao, K. K.; Low, J.; Liu, H. J.; Bo, Y. N.; Ma, J.; Liu, Q. X.; Jiang, Y. W.; Yang, J. Z.; Pan, Y. et al. Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials. Nano Res. 2021, 14, 3234–3239.

[18]

Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

[19]

Niu, L. J.; Wang, D. D.; Xu, K.; Hao, W. C.; An, L.; Kang, Z. H.; Sun, Z. C. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Res. 2021, 14, 4093–4099.

[20]

Fang, Y. F.; Liu, Z. C.; Han, J. R.; Jin, Z. Y.; Han, Y. Q.; Wang, F. X.; Niu, Y. S.; Wu, Y. P.; Xu, Y. H. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene. Adv. Energy Mater. 2019, 9, 1803406.

[21]

Wang, J. W.; Sun, X. L.; Zhao, H. Y.; Xu, L. L.; Xia, J. L.; Luo, M.; Yang, Y. D.; Du, Y. P. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping. J. Phys. Chem. C 2019, 123, 22735–22741.

[22]

Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy 2018, 52, 264–270.

[23]

Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

[24]

Liu, P. Y.; Shi, K.; Chen, W. Z.; Gao, R.; Liu, Z. L.; Hao, H. G.; Wang, Y. Q. Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B: Environ. 2021, 287, 119956.

[25]

Li, Y.; Kong, Y.; Hou, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Wen, Z. H. In situ growth of nitrogen-doped carbon-coated γ-Fe2O3 nanoparticles on carbon fabric for electrochemical N2 fixation. ACS Sustain. Chem. Eng. 2019, 7, 8853–8859.

[26]

Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.

[27]

Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

[28]

Patil, S. B.; Wang, D. Y. Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction. Small 2020, 16, 2002885.

[29]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[30]

Xue, C.; Zhou, X. R.; Li, X. H.; Yang, N.; Xin, X.; Wang, Y. S.; Zhang, W. N.; Wu, J. S.; Liu, W. J.; Huo, F. W. Rational synthesis and regulation of hollow structural materials for electrocatalytic nitrogen reduction reaction. Adv. Sci. 2022, 9, 2104183.

[31]

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

[32]

Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.

[33]

Shi, M. M.; Di, B.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

[34]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[35]

Jiao, D. X.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: A computational study. J. Mater. Chem. A 2021, 9, 1240–1251.

[36]

Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

[37]

Cui, C. N.; Zhang, H. C.; Luo, Z. X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: A theoretical study of the atomically precise active-site mechanism. Nano Res. 2020, 13, 2280–2288.

[38]

Kuo, S. L.; Wu, N. L. Investigation of pseudocapacitive charge–storage reaction of MnO2·nH2O supercapacitors in aqueous electrolytes. J. Electrochem. Soc. 2006, 153, A1317–A1324.

[39]

Fukuda, K.; Nakai, I.; Ebina, Y.; Tanaka, M.; Mori, T.; Sasaki, T. Structure analysis of exfoliated unilamellar crystallites of manganese oxide nanosheets. J. Phys. Chem. B. 2006, 110, 17070–17075.

[40]

Wang, H.; Zhang, J. J.; Hang, X. D.; Zhang, X. D.; Xie, J. F.; Pan, B. C.; Xie, Y. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem., Int. Ed. 2015, 54, 1195–1199.

[41]

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

[42]

Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J. Room-temperature synthesis of manganese oxide monosheets. J. Am. Chem. Soc. 2008, 130, 15938–15943.

[43]

Omomo, Y.; Sasaki, T.; Wang, L. Z.; Watanabe, M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 2003, 125, 3568–3575.

[44]

Wang, J.; Huang, H.; Wang, P.; Wang, S.; Li, J. P. N, S synergistic effect in hierarchical porous carbon for enhanced NRR performance. Carbon 2021, 179, 358–364.

[45]

Ogata, A.; Komaba, S.; Baddour-Hadjean, R.; Pereira-Ramos, J. P.; Kumagai, N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochim. Acta 2008, 53, 3084–3093.

[46]

Nakajima, A.; Yoshihara, A.; Ishigame, M. Defect-induced Raman spectra in doped CeO2. Phys. Rev. B 1994, 50, 13297–13307.

[47]

Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

File
12274_2022_5117_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2022
Revised: 27 September 2022
Accepted: 29 September 2022
Published: 24 October 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the National Nature Science Foundation of China (No. 22122113) and National Key Research and Development Program of China (No. 2021YFB4000405).

Return