AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Conducting polymer-functionalized mesoporous metal-organic frameworks for high-performance Li-S battery

Xiao-Fei Liu1Ya-Rui Wang1Hong Chen1Bo Li2Shuang-Quan Zang1( )
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, China
Show Author Information

Graphical Abstract

The conductive polyaniline was introduced into a mesoporous metal-organic framework (MOF) to improve its skeleton stability and electrical conductivity. Lithium polysulfides were effectively anchored in the hierarchical pores with the strong interactions between polysulfides and open metal sites and polymers.

Abstract

It was known that mesoporous metal-organic frameworks (MOFs) with hierarchical pores and unsaturated metal sites can effectively inhibit the shuttle effect of lithium polysulfides in lithium-sulfur battery, however, the unsatisfactory structural stability and electrical conductivity limit the application of mesoporous MOFs (MMOFs) in Li-S batteries. Aiming at sensible solutions, the conductive polyaniline (PANI) was incorporated into the MMOF to enhance the discharge capacity and the cycling stability of proposed Li-S batteries, as the stability and the conductivity of the MMOF cathode was improved simultaneously. The activated MMOF-PANI provides physical and chemical adsorption of polysulfides against their shuttle effect. Moreover, the introduction of PANI into the channels of MMOF effectively improves the conductivity of MMOF, thus improving the electrochemical performance of the MMOF-PANI-based batteries. Benefiting from these synergetic effects, the S@MMOF-PANI cathode delivers improved electrochemical performance including excellent rate performance and cycling stability. The battery shows an initial capacity of 777.7 mAh·g−1 at 2.0 C and a low decay rate of 0.06% per cycle in 1,000 cycles and approximately a repeatable rate performance.

Electronic Supplementary Material

Download File(s)
12274_2022_5116_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Babu, B.; Simon, P.; Balducci, A. Fast charging materials for high power applications. Adv. Energy Mater. 2020, 10, 2001128.

[2]

Lu, Y. X.; Rong, X. H.; Hu, Y. S.; Chen, L. Q.; Li, H. Research and development of advanced battery materials in China. Energy Storage Mater. 2019, 23, 144–153.

[3]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[4]

Li, F.; Liu, Q. H.; Hu, J. W.; Feng, Y. Z.; He, P. B.; Ma, J. M. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale 2019, 11, 15418–15439.

[5]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[6]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[7]

Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

[8]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu. Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[9]

Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

[10]

Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.

[11]

Hu, Z. G.; Zhao, D. Metal-organic frameworks with Lewis acidity: Synthesis, characterization, and catalytic applications. CrystEngComm 2017, 19, 4066–4081.

[12]

Baumann, A. E.; Burns, D. A.; Díaz, J. C.; Thoi, V. S. Lithiated defect sites in Zr metal-organic framework for enhanced sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 2159–2167.

[13]

Liu, X. F.; Guo, X. Q.; Wang, R.; Liu, Q. C.; Li, Z. J.; Zang, S. Q.; Mak, T. C. W. Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 2838–2844.

[14]

Park, J. H.; Choi, K. M.; Lee, D. K.; Moon, B. C.; Shin, S. R.; Song, M. K.; Kang, J. K. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals. Sci. Rep. 2016, 6, 25555.

[15]

Hong, X. J.; Tan, T. X.; Guo, Y. K.; Tang, X. Y.; Wang, J. Y.; Qin, W.; Cai, Y. P. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 2018, 10, 2774–2780.

[16]

Li, M. T.; Sun, Y.; Zhao, K. S.; Wang, Z.; Wang, X. L.; Su, Z. M.; Xie, H. M. Metal-organic framework with aromatic rings tentacles: High sulfur storage in Li-S batteries and efficient benzene homologues distinction. ACS Appl. Mater. Interfaces 2016, 8, 33183–33188.

[17]

Wang, Z. Q.; Wang, B. X.; Yang, Y.; Cui, Y. J.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 20999–21004.

[18]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater 2022, 34, 2107836.

[19]

Rana, M.; AL-Fayaad, H. A.; Luo, B.; Lin, T.; Ran, L. B.; Clegg, J. K.; Gentle, I.; Knibbe, R. Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 2020, 75, 105009.

[20]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[21]

Han, Z. Y.; Gao, R. H.; Jia, Y. Y.; Zhang, M. T.; Lao, Z. J.; Chen, B.; Zhang, Q.; Li, C.; Lv, W.; Zhou, G. M. Catalytic effect in Li-S batteries: From band theory to practical application. Mater Today 2022, 57, 84–120.

[22]

Peng, L.; Yang, S. L.; Jawahery, S.; Moosavi, S. M.; Huckaba, A. J.; Asgari, M.; Oveisi, E.; Nazeeruddin, M. K.; Smit, B.; Queen, W. L. Preserving porosity of mesoporous metal-organic frameworks through the introduction of polymer guests. J. Am. Chem. Soc. 2019, 141, 12397–12405.

[23]

Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.

[24]

Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Hybrid micro-/nano-structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46, 2660–2677.

[25]

Pan, T. Y.; Li, Z. H.; He, Q.; Xu, X.; He, L.; Meng, J. S.; Zhou, C.; Zhao, Y.; Mai, L. Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Mater. 2019, 23, 55–61.

[26]

Zhang, J. T.; Yu, L.; Lou, X. W. D. Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 2017, 10, 4298–4304.

[27]

Liu, X. W.; Sun, T. J.; Hu, J. L.; Wang, S. D. Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A 2016, 4, 3584–3616.

[28]

Zhao, Z. X.; Wang, S.; Liang, R.; Li, Z.; Shi, Z. C.; Chen, G. H. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries. J. Mater. Chem. A 2014, 2, 13509–13512.

[29]

Hou, Y. P.; Mao, H. Z.; Xu, L. Q. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 2017, 10, 344–353.

[30]

Baumann, A. E.; Downing, J. R.; Burns, D. A.; Hersam, M. C.; Thoi, V. S. Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 2020, 12, 37173–37181.

[31]

Mao, Y. Y.; Li, G. R.; Guo, Y.; Li, Z. P.; Liang, C. D.; Peng, X. S.; Lin, Z. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14628.

[32]

Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater 2018, 8, 1800013.

[33]

Liu, X.; Wang, S.; Wang, A.; Wang, Z.; Chen, J.; Zeng, Q.; Chen, P.; Liu, W.; Li, Z.; Zhang, L. A new cathode material synthesized by a thiol-modified metal-organic framework (MOF) covalently connecting sulfur for superior long-cycling stability in lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 24515–24523.

[34]

Jiang, H. Q.; Liu, X. C.; Wu, Y. S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 3916–3921.

[35]

AlKaabi, K.; Wade, C. R.; Dincă, M. Transparent-to-dark electrochromic behavior in naphthalene-diimide-based mesoporous MOF-74 analogs. Chem 2016, 1, 264–272.

[36]

Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518.

[37]

Zeng, P.; Yuan, C.; An, J.; Yang, X. F.; Cheng, C.; Yan, T. R.; Liu, G. L.; Chan, T. S.; Kang, J.; Zhang, L. et al. Achieving reversible precipitation-decomposition of reactive Li2S towards high-areal-capacity lithium-sulfur batteries with a wide-temperature range. Energy Storage Mater. 2022, 44, 425–432.

[38]

Yang, Y.; Hong, X. J.; Song, C. L.; Li, G. H.; Zheng, Y. X.; Zhou, D. D.; Zhang, M.; Cai, Y. P.; Wang, H. X. Lithium bis(trifluoromethanesulfonyl)imide assisted dual-functional separator coating materials based on covalent organic frameworks for high-performance lithium-selenium sulfide batteries. J. Mater. Chem. A 2019, 7, 16323–16329.

[39]

Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

[40]

Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115–1120.

[41]

Yang, G.; Tan, J.; Jin, H.; Kim, Y. H.; Yang, X. Y.; Son, D. H.; Ahn, S.; Zhou, H. C.; Yu, C. Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-areal-capacity sulfur cathodes and lithium anodes. Adv. Funct. Mater. 2018, 28, 1800595.

[42]

Wang, R.; Mi, J. S.; Dong, X. Y.; Liu, X. F.; Lv, Y. R.; Du, J.; Zhao, J. Y.; Zang, S. Q. Creating a polar surface in carbon frameworks from single-source metal-organic frameworks for advanced CO2 uptake and lithium-sulfur batteries. Chem. Mater. 2019, 31, 4258–4266.

[43]

Zhang, B.; Wang, L.; Wang, B.; Zhai, Y. J.; Zeng, S. Y.; Zhang, M.; Qian, Y. T.; Xu, L. Q. Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium-sulfur batteries. Nano Res. 2022, 15, 4058–4067.

Nano Research
Pages 4867-4873
Cite this article:
Liu X-F, Wang Y-R, Chen H, et al. Conducting polymer-functionalized mesoporous metal-organic frameworks for high-performance Li-S battery. Nano Research, 2023, 16(4): 4867-4873. https://doi.org/10.1007/s12274-022-5116-6
Topics:

800

Views

10

Crossref

10

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 09 July 2022
Revised: 28 September 2022
Accepted: 28 September 2022
Published: 28 October 2022
© Tsinghua University Press 2022
Return