Journal Home > Volume 16 , Issue 4

Reaction kinetics of nanoparticles can be controlled by tuning the Peclet number (Pe) as it is an essential parameter in synthesis of multi-sized nanoparticles. Herein, we propose to implement a self-driven multi-dimension microchannels reactor (MMR) for the one droplet synthesis of multi-sized nanoparticles. By carefully controlling the Pe at the gas–liquid interface, the newly formed seed crystals selectively accumulate and grow to a specific size. By the combination of microchannels of different widths and lengths, one droplet reaction in the same apparatus achieves the synchronous synthesis of diverse nanoparticles. MMR enables precise control of nanoparticle diameter at 5 nm precision in the range of 10–110 nm. The use of MMR can be extended to the synthesis of uniform Ag, Au, Pt, and Pd nanoparticles, opening towards the production and engineering of nanostructured materials. This approach gives the chance to regulate the accumulation probability for precise synthesis of nanoparticles with different diameters.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One droplet reaction for synthesis of multi-sized nanoparticles

Show Author's information Bingda Chen1,2,§Feifei Qin3,§Meng Su1,2( )Daixi Xie1,2Zeying Zhang1Qi Pan1Huadong Wang1,2Xu Yang1,2Sisi Chen1,2Jingwei Huang3Dominique Derome4Jan Carmeliet3Yanlin Song1,2( )
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke QC J1K 2R1, Canada

§ Bingda Chen and Feifei Qin contributed equally to this work.

Abstract

Reaction kinetics of nanoparticles can be controlled by tuning the Peclet number (Pe) as it is an essential parameter in synthesis of multi-sized nanoparticles. Herein, we propose to implement a self-driven multi-dimension microchannels reactor (MMR) for the one droplet synthesis of multi-sized nanoparticles. By carefully controlling the Pe at the gas–liquid interface, the newly formed seed crystals selectively accumulate and grow to a specific size. By the combination of microchannels of different widths and lengths, one droplet reaction in the same apparatus achieves the synchronous synthesis of diverse nanoparticles. MMR enables precise control of nanoparticle diameter at 5 nm precision in the range of 10–110 nm. The use of MMR can be extended to the synthesis of uniform Ag, Au, Pt, and Pd nanoparticles, opening towards the production and engineering of nanostructured materials. This approach gives the chance to regulate the accumulation probability for precise synthesis of nanoparticles with different diameters.

Keywords: gas–liquid interface, accumulation effect, one droplet reaction, multi-sized nanoparticles

References(35)

[1]

Garlyyev, B.; Watzele, S.; Fichtner, J.; Michalička, J.; Schökel, A.; Senyshyn, A.; Perego, A.; Pan, D. J.; El-Sayed, H. A.; Macak, J. M. et al. Electrochemical top-down synthesis of C-supported Pt nano-particles with controllable shape and size: Mechanistic insights and application. Nano Res. 2021, 14, 2762–2769.

[2]

Yu, S.; Kim, D.; Qi, Z. Y.; Louisia, S.; Li, Y. F.; Somorjai, G. A.; Yang, P. D. Nanoparticle assembly induced ligand interactions for enhanced electrocatalytic CO2 conversion. J. Am. Chem. Soc. 2021, 143, 19919–19927.

[3]

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

[4]

Zhong, Q. X.; Feng, J.; Jiang, B.; Fan, Y. L.; Zhang, Q.; Chen, J. X.; Yin, Y. D. Strain-modulated seeded growth of highly branched black Au superparticles for efficient photothermal conversion. J. Am. Chem. Soc. 2021, 143, 20513–20523.

[5]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[6]

Liu, Y. N.; Chen, C. S.; Valdez, J.; Motta Meira, D.; He, W. T.; Wang, Y.; Harnagea, C.; Lu, Q. Q.; Guner, T.; Wang, H. et al. Phase-enabled metal–organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 2021, 12, 1231.

[7]

Zhang, J. M.; Chen, G. Z.; Guay, D.; Chaker, M.; Ma, D. L. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125–2130.

[8]

Yang, M.; Chan, H.; Zhao, G. P.; Bahng, J. H.; Zhang, P. J.; Král, P.; Kotov, N. A. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 2017, 9, 287–294.

[9]

Li, Y. T.; Liu, J. M.; Wang, Z. C.; Jin, J.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv. Mater. 2020, 32, 1907718.

[10]

Chen, J. X.; Gong, M. F.; Fan, Y. L.; Feng, J.; Han, L. L.; Xin, H. L.; Cao, M. H.; Zhang, Q.; Zhang, D.; Lei, D. Y. et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 2022, 16, 910–920.

[11]

Kim, H. N.; Yang, S. Responsive smart windows from nanoparticle–polymer composites. Adv. Funct. Mater. 2020, 30, 1902597.

[12]

Ding, Y. Z.; Huang, E.; Lam, K. S.; Pan, T. R. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning. Lab Chip 2013, 13, 1902–1910.

[13]

Yao, Y. G.; Huang, Z. N.; Li, T. Y.; Wang, H.; Liu, Y. F.; Stein, H. S.; Mao, Y. M.; Gao, J. L.; Jiao, M. L.; Dong, Q. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. USA 2020, 117, 6316–6322.

[14]

DeMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402.

[15]

Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nanocrystals. J. Am. Chem. Soc. 2012, 134, 15822–15831.

[16]

Zhao, M.; Chen, Z. T.; Shi, Y. F.; Hood, Z. D.; Lyu, Z.; Xie, M. H.; Chi, M. F.; Xia, Y. N. Kinetically controlled synthesis of rhodium nanocrystals with different shapes and a comparison study of their thermal and catalytic properties. J. Am. Chem. Soc. 2021, 143, 6293–6302.

[17]

Wang, Y.; Zheng, Y. Q.; Huang, C. Z.; Xia, Y. N. Synthesis of Ag nanocubes 18–32 nm in edge length: The effects of polyol on reduction kinetics, size control, and reproducibility. J. Am. Chem. Soc. 2013, 135, 1941–1951.

[18]

Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Král, P.; Matsudaira, P.; Mirsaidov, U. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 2017, 9, 77–82.

[19]

Gao, C. B.; Hu, Y. X.; Wang, M. S.; Chi, M. F.; Yin, Y. D. Fully alloyed Ag/Au nanospheres: Combining the plasmonic property of Ag with the stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479.

[20]

Luo, G. S.; Du, L.; Wang, Y. J.; Lu, Y. C.; Xu, J. H. Controllable preparation of particles with microfluidics. Particuology 2011, 9, 545–558.

[21]

Dunne, P.; Adachi, T.; Dev, A. A.; Sorrenti, A.; Giacchetti, L.; Bonnin, A.; Bourdon, C.; Mangin, P. H.; Coey, J. M. D.; Doudin, B. et al. Liquid flow and control without solid walls. Nature 2020, 581, 58–62.

[22]

Yang, M.; Yang, L. N.; Zheng, J.; Hondow, N.; Bourne, R. A.; Bailey, T.; Irons, G.; Sutherland, E.; Lavric, D.; Wu, K. J. Mixing performance and continuous production of nanomaterials in an advanced-flow reactor. Chem. Eng. J. 2021, 412, 128565.

[23]

Hall, B. L.; Taylor, C. J.; Labes, R.; Massey, A. F.; Menzel, R.; Bourne, R. A.; Chamberlain, T. W. Autonomous optimisation of a nanoparticle catalysed reduction reaction in continuous flow. Chem. Commun. 2021, 57, 4926–4929.

[24]

Yuan, K.; Song, T. Q.; Yang, C. H.; Guo, J.; Sun, Q. S.; Zou, Y.; Jiao, F.; Li, L. J.; Zhang, X. T.; Dong, H. L. et al. Polymer-assisted space-confined strategy for the foot-scale synthesis of flexible metal–organic framework-based composite films. J. Am. Chem. Soc. 2021, 143, 17526–17534.

[25]
Fan, J.; Li, S. J.; Wu, Z. Q.; Chen, Z. Diffusion and mixing in microfluidic devices. In Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery. Santos, H. A.; Liu, D. F.; Zhang, H. B. , Eds.; Elsevier: Amsterdam, 2019; pp 79–100.
[26]

Chen, B. D.; Qin, F. F.; Su, M.; Zhang, Z. Y.; Pan, Q.; Zou, M. M.; Yang, X.; Chen, S. S.; Derome, D.; Carmeliet, J. et al. Self-driven multiplex reaction: Reactant and product diffusion via a transpiration-inspired capillary. ACS Appl. Mater. Interfaces 2021, 13, 22031–22039.

[27]

Elvira, K. S.; Casadevall i Solvas, X.; Wootton, R. C. R.; deMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915.

[28]

Atencia, J.; Beebe, D. J. Controlled microfluidic interfaces. Nature 2005, 437, 648–655.

[29]

Qin, F. F.; Su, M.; Zhao, J. L.; Mazloomi Moqaddam, A.; Carro, L. D.; Brunschwiler, T.; Kang, Q. J.; Song, Y. L.; Derome, D.; Carmeliet, J. Controlled 3D nanoparticle deposition by drying of colloidal suspension in designed thin micro-porous architectures. Int. J. Heat Mass Transfer 2020, 158, 120000.

[30]

Wang, H. S.; Qiao, X. L.; Chen, J. G.; Wang, X. J.; Ding, S. Y. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453.

[31]

Lin, L.; Chen, M.; Qin, H. Y.; Peng, X. G. Ag nanocrystals with nearly ideal optical quality: Synthesis, growth mechanism, and characterizations. J. Am. Chem. Soc. 2018, 140, 17734–17742.

[32]

Zhang, Z. L.; Zhang, X. Y.; Xin, Z. Q.; Deng, M. M.; Wen, Y. Q.; Song, Y. L. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 2011, 22, 425601.

[33]

Qin, F. F.; Del Carro, L.; Mazloomi Moqaddam, A.; Kang, Q. J.; Brunschwiler, T.; Derome, D.; Carmeliet, J. Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. J. Fluid Mech. 2019, 866, 33–60.

[34]

Qin, F. F.; Mazloomi Moqaddam, A.; Kang, Q. J.; Derome, D.; Carmeliet, J. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow. Phys. Fluids 2018, 30, 032104.

[35]

Zhang, Q.; Ge, J. P.; Pham, T.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angew. Chem., Int. Ed. 2009, 48, 3516–3519.

File
12274_2022_5115_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 July 2022
Revised: 27 September 2022
Accepted: 28 September 2022
Published: 02 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Beijing Nova Program from Beijing Municipal Science & Technology Commission (Nos. Z201100006820037 and Z211100002121001), the National Key R&D Program of China (No. 2018YFA0208501), the National Natural Science Foundation of China (Nos. 22075296, 91963212, and 51961145102), the Youth Innovation Promotion Association, the Chinese Academy of Sciences (No. 2020032), and Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202005). F. F. Q. and J. C. acknowledge the Swiss National Super Computing Center (Project No. s1081) for providing the computing support. B. D. C. acknowledges Jiarong Yang for his support in graphing.

Return