Journal Home > Volume 16 , Issue 3

Metal–organic frameworks (MOFs), a well-known coordination network involving potential voids, have attracted attention for energy conversion and storage. As far as is known, MOFs are not only believed to be crystalline. Emerging amorphous MOFs (aMOFs) are starting as supplementary to crystalline MOF (cMOF) in various electrochemical energy fields owing to intrinsic superiorities over crystalline states, greater ease of processing, and distinct physical and chemical properties. aMOFs retain the basic skeletons and connectivity of building units but without any long-range order. Such structural features over long range possess the isotropy without grain boundaries, resulting in fast ions flux and uniform distribution. Simultaneously, distinct short-range characteristics provide diverse pore confined environment and abundant active sites, and thus accelerate mass transport and charge transfer during electrochemical reactions. Deep understandings and controllable design of aMOF may broaden the opportunities for both scientific researches beyond crystalline materials and practical applications. To date, comprehensive reviews about aMOFs in the fields of energy conversion and storage remain woefully underrepresented. Herein, we summarize the roadmap of aMOF from the development, structural design, opportunity, application, bottleneck, and perspective. In-depth structure–activity relationships with aMOF chemistry are highlighted in the typical electrochemical energy conversion like water oxidation and energy storage, including supercapacitor and battery. The combination of disordered nature at long range and short range, alongside the dynamic structural changes, is promising to reinforce cognition of aMOF domains with MOF versatility, shedding light on the design for efficient electrochemical energy applications via amorphization.


menu
Abstract
Full text
Outline
About this article

Roadmap of amorphous metal–organic framework for electrochemical energy conversion and storage

Show Author's information Hang WangQi YangNan ZhengXingwu ZhaiTao XuZhixin SunLiang WuMin Zhou( )
Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

Abstract

Metal–organic frameworks (MOFs), a well-known coordination network involving potential voids, have attracted attention for energy conversion and storage. As far as is known, MOFs are not only believed to be crystalline. Emerging amorphous MOFs (aMOFs) are starting as supplementary to crystalline MOF (cMOF) in various electrochemical energy fields owing to intrinsic superiorities over crystalline states, greater ease of processing, and distinct physical and chemical properties. aMOFs retain the basic skeletons and connectivity of building units but without any long-range order. Such structural features over long range possess the isotropy without grain boundaries, resulting in fast ions flux and uniform distribution. Simultaneously, distinct short-range characteristics provide diverse pore confined environment and abundant active sites, and thus accelerate mass transport and charge transfer during electrochemical reactions. Deep understandings and controllable design of aMOF may broaden the opportunities for both scientific researches beyond crystalline materials and practical applications. To date, comprehensive reviews about aMOFs in the fields of energy conversion and storage remain woefully underrepresented. Herein, we summarize the roadmap of aMOF from the development, structural design, opportunity, application, bottleneck, and perspective. In-depth structure–activity relationships with aMOF chemistry are highlighted in the typical electrochemical energy conversion like water oxidation and energy storage, including supercapacitor and battery. The combination of disordered nature at long range and short range, alongside the dynamic structural changes, is promising to reinforce cognition of aMOF domains with MOF versatility, shedding light on the design for efficient electrochemical energy applications via amorphization.

Keywords: energy storage, energy conversion, metal–organic frameworks, amorphization

References(95)

[1]

Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

[2]

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal–organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

[3]

Hou, C. C.; Xu, Q. Metal–organic frameworks for energy. Adv. Energy Mater. 2019, 9, 1801307.

[4]

Li, S.; Lin, J. D.; Xiong, W. M.; Guo, X. Y.; Wu, D. Y.; Zhang, Q. B.; Zhu, Q. L.; Zhang, L. Design principles and direct applications of cobalt-based metal–organic frameworks for electrochemical energy storage. Coord. Chem. Rev. 2021, 438, 213872.

[5]

Zhu, B. J.; Wen, D. S.; Liang, Z. B.; Zou, R. Q. Conductive metal–organic frameworks for electrochemical energy conversion and storage. Coord. Chem. Rev. 2021, 446, 214119.

[6]

Jiang, Q. Y.; Xu, J.; Li, Z. Q.; Zhou, C. H.; Chen, X.; Meng, H. B.; Han, Y.; Shi, X. F.; Zhan, C. H.; Zhang, Y. Q. et al. Two-dimensional metal–organic framework nanosheet supported noble metal nanocrystals for high-efficiency water oxidation. Adv. Mater. Interfaces 2021, 8, 2002034.

[7]

Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Hybrid micro-/nano-structures derived from metal–organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46, 2660–2677.

[8]

Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal–organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

[9]

Wang, H.; Zhang, N.; Li, S. M.; Ke, Q. F.; Li, Z. Q.; Zhou, M. Metal–organic framework composites for energy conversion and storage. J. Semicond. 2020, 41, 091707.

[10]

Bennett, T. D.; Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 2018, 3, 431–440.

[11]

Öhrström, L. Let’s talk about MOFs-topology and terminology of metal–organic frameworks and why we need them. Crystals 2015, 5, 154–162.

[12]

Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724.

[13]

Bennett, T. D.; Cheetham, A. K. Amorphous metal–organic frameworks. Acc. Chem. Res. 2014, 47, 1555–1562.

[14]

Fonseca, J.; Gong, T. H.; Jiao, L.; Jiang, H. L. Metal–organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611.

[15]

Maspoch, D.; Ruiz-Molina, D.; Wurst, K.; Domingo, N.; Cavallini, M.; Biscarini, F.; Tejada, J.; Rovira, C.; Veciana, J. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nat. Mater. 2003, 2, 190–195.

[16]

Bennett, T. D.; Goodwin, A. L.; Dove, M. T.; Keen, D. A.; Tucker, M. G.; Barney, E. R.; Soper, A. K.; Bithell, E. G.; Tan, J. C.; Cheetham, A. K. Structure and properties of an amorphous metal–organic framework. Phys. Rev. Lett. 2010, 104, 115503.

[17]

Castel, N.; Coudert, F. X. Atomistic models of amorphous metal–organic frameworks. J. Phys. Chem. C 2022, 126, 6905–6914.

[18]

Zhou, Y.; Liu, C. J. Amorphization of metal–organic framework MOF-5 by electrical discharge. Plasma Chem. Plasma Process. 2011, 31, 499–506.

[19]

Van de Voorde, B.; Stassen, I.; Bueken, B.; Vermoortele, F.; De Vos, D.; Ameloot, R.; Tan, J. C.; Bennett, T. D. Improving the mechanical stability of zirconium-based metal–organic frameworks by incorporation of acidic modulators. J. Mater. Chem. A 2015, 3, 1737–1742.

[20]

Lee, H. J.; We, J.; Kim, J. O.; Kim, D.; Cha, W.; Lee, E.; Sohn, J.; Oh, M. Morphological and structural evolutions of metal–organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem., Int. Ed. 2015, 54, 10564–10568.

[21]

Qiao, Q. Q.; Li, G. R.; Wang, Y. L.; Gao, X. P. To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. J. Mater. Chem. A 2016, 4, 4440–4447.

[22]

Li, J. T.; Huang, W. Z.; Wang, M. M.; Xi, S. B.; Meng, J. S.; Zhao, K. N.; Jin, J.; Xu, W. W.; Wang, Z. Y.; Liu, X. et al. Low-crystalline bimetallic metal–organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 2019, 4, 285–292.

[23]

Cui, X. W.; Zhang, L.; Zhang, J. W.; Gong, L.; Gao, M. W.; Zheng, P. T.; Xiang, L.; Wang, W. D.; Hu, W. J. H.; Xu, Q. et al. A novel metal–organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation. Nano Energy 2019, 59, 102–109.

[24]

Liu, C.; Wang, J.; Wan, J. J.; Cheng, Y.; Huang, R.; Zhang, C. Q.; Hu, W. L.; Wei, G. F.; Yu, C. Z. Amorphous metal–organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 3630–3637.

[25]

Gao, C. W.; Jiang, Z. J.; Qi, S. B.; Wang, P. X.; Jensen, L. R.; Johansen, M.; Christensen, C. K.; Zhang, Y. F.; Ravnsbæk, D. B.; Yue, Y. Z. Metal–organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv. Mater. 2022, 34, 2110048.

[26]

Chapman, K. W.; Halder, G. J.; Chupas, P. J. Pressure-induced amorphization and porosity modification in a metal–organic framework. J. Am. Chem. Soc. 2009, 131, 17546–17547.

[27]

Moggach, S. A.; Bennett, T. D.; Cheetham, A. K. The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew. Chem., Int. Ed. 2009, 48, 7087–7089.

[28]

Colodrero, R. M. P.; Papathanasiou, K. E.; Stavgianoudaki, N.; Olivera-Pastor, P.; Losilla, E. R.; Aranda, M. A. G.; León-Reina, L.; Sanz, J.; Sobrados, I.; Choquesillo-Lazarte, D. et al. Multifunctional luminescent and proton-conducting lanthanide carboxyphosphonate open-framework hybrids exhibiting crystalline-to-amorphous-to-crystalline transformations. Chem. Mater. 2012, 24, 3780–3792.

[29]

Joarder, B.; Lin, J. B.; Romero, Z.; Shimizu, G.; K. H. Single crystal proton conduction study of a metal organic framework of modest water stability. J. Am. Chem. Soc. 2017, 139, 7176–7179.

[30]

Zhang, X. D.; Song, L.; Bi, F. K.; Zhang, D. F.; Wang, Y. X.; Cui, L. F. Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. J. Colloid Interface Sci. 2020, 571, 38–47.

[31]

Ohtsu, H.; Bennett, T. D.; Kojima, T.; Keen, D. A.; Niwa, Y.; Kawano, M. Amorphous-amorphous transition in a porous coordination polymer. Chem. Commun. 2017, 53, 7060–7063.

[32]

Conrad, S.; Kumar, P.; Xue, F.; Ren, L. M.; Henning, S.; Xiao, C. H.; Mkhoyan, K. A.; Tsapatsis, M. Controlling dissolution and transformation of zeolitic imidazolate frameworks by using electron-beam-induced amorphization. Angew. Chem., Int. Ed. 2018, 57, 13592–13597.

[33]

Chen, Z. H. Y.; Chen, Z.; Farha, O. K.; Chapman, K. W. Mechanistic insights into nanoparticle formation from bimetallic metal–organic frameworks. J. Am. Chem. Soc. 2021, 143, 8976–8980.

[34]

Fischer, H. E.; Barnes, A. C.; Salmon, P. S. Neutron and X-ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 2006, 69, 233–299.

[35]

Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

[36]

Moran, R. F.; Dawson, D. M.; Ashbrook, S. E. Exploiting NMR spectroscopy for the study of disorder in solids. Int. Rev. Phys. Chem. 2017, 36, 39–115.

[37]

Hu, Y. H.; Zhang, L. Amorphization of metal–organic framework MOF-5 at unusually low applied pressure. Phys. Rev. B 2010, 81, 174103.

[38]

McMillan, P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Mineral. 1984, 69, 622–644.

[39]

Zacharia, R.; Cossement, D.; Lafi, L.; Chahine, R. Volumetric hydrogen sorption capacity of monoliths prepared by mechanical densification of MOF-177. J. Mater. Chem. 2010, 20, 2145–2151.

[40]

Zhang, H. J.; Chen, Z. Q.; Wang, S. J. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom. J. Chem. Phys. 2012, 136, 034701.

[41]

Ma, N.; Horike, S. Metal–organic network-forming glasses. Chem. Rev. 2022, 122, 4163–4203.

[42]

Wu, X. L.; Yue, H.; Zhang, Y. Y.; Gao, X. Y.; Li, X. Y.; Wang, L. C.; Cao, Y. F.; Hou, M.; An, H. X.; Zhang, L. et al. Packaging and delivering enzymes by amorphous metal–organic frameworks. Nat. Commun. 2019, 10, 5165.

[43]

Horike, S.; Ma, N.; Fan, Z. Y.; Kosasang, S.; Smedskjaer, M. M. Mechanics, ionics, and optics of metal–organic framework and coordination polymer glasses. Nano Lett. 2021, 21, 6382–6390.

[44]

Gao, Z. H.; Xu, B. Y.; Fan, Y. Q.; Zhang, T. J.; Chen, S. W.; Yang, S.; Zhang, W. G.; Sun, X.; Wei, Y. H.; Wang, Z. F. et al. Topological-distortion-driven amorphous spherical metal–organic frameworks for high-quality single-mode microlasers. Angew. Chem., Int. Ed. 2021, 60, 6362–6366.

[45]

Morris, R. E.; Brammer, L. Coordination change, lability and hemilability in metal–organic frameworks. Chem. Soc. Rev. 2017, 46, 5444–5462.

[46]

Liu, J.; Cao, G. Z.; Yang, Z. G.; Wang, D. H.; Dubois, D.; Zhou, X. D.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.

[47]

Zhou, M.; Xu, Y.; Lei, Y. Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today 2018, 20, 33–57.

[48]

Jiang, Q. Y.; Zhou, C. H.; Meng, H. B.; Han, Y.; Shi, X. F.; Zhan, C. H.; Zhang, R. F. Two-dimensional metal–organic framework nanosheets: Synthetic methodologies and electrocatalytic applications. J. Mater. Chem. A 2020, 8, 15271–15301.

[49]

Zhou, M.; Xu, Y.; Wang, C. L.; Li, Q. W.; Xiang, J. X.; Liang, L. Y.; Wu, M. H.; Zhao, H. P.; Lei, Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy 2017, 31, 514–524.

[50]

Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal–organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.

[51]

Ko, M.; Mendecki, L.; Mirica, K. A. Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem. Commun. 2018, 54, 7873–7891.

[52]

Minami, T. Fast ion conducting glasses. J. Non-Cryst. Solids 1985, 73, 273–284.

[53]

Jiang, G. S.; Qu, C. Z.; Xu, F.; Zhang, E.; Lu, Q. Q.; Cai, X. R.; Hausdorf, S.; Wang, H. Q.; Kaskel, S. Glassy metal–organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2104300.

[54]

Zhang, S. S.; Liu, Z. J.; Li, L.; Tang, Y. D.; Li, S. K.; Huang, H. T.; Zhang, H. Y. Electrochemical activation strategies of a novel high entropy amorphous V-based cathode material for high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 18488–18497.

[55]

Dawson, J. A.; Canepa, P.; Famprikis, T.; Masquelier, C.; Islam, M. S. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2018, 140, 362–368.

[56]

To, T.; Sørensen, S. S.; Stepniewska, M.; Qiao, A.; Jensen, L. R.; Bauchy, M.; Yue, Y. Z.; Smedskjaer, M. M. Fracture toughness of a metal–organic framework glass. Nat. Commun. 2020, 11, 2593.

[57]

Hou, X. B.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Controllable amorphization engineering on bimetallic metal–organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.

[58]

Ma, J. C.; Bai, X. J.; He, W. X.; Wang, S.; Li, L L.; Chen, H.; Wang, T. Q.; Zhang, X. M.; Li, Y. N.; Zhang, L. Y. et al. Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction. Chem. Commun. 2019, 55, 12567–12570.

[59]

Wei, K. L.; Wang, X.; Jiao, X. L.; Li, C.; Chen, D. R. Self-supported three-dimensional macroporous amorphous NiFe bimetallic–organic frameworks for enhanced water oxidation. Appl. Surf. Sci. 2021, 550, 149323.

[60]

Lin, C.; Zhao, W.; Yan, X. R.; Liu, B.; Fang, X. Z.; Wang, J. X.; Xia, N. N.; Tian, J. Y. Fishnet-like superstructures constructed from ultrafine and ultralong Ni-MOF nanowire arrays directionally grown on highly rough and conductive scaffolds: Synergistic activating effect for efficient and robust alkaline water oxidation activity. Appl. Surf. Sci. 2020, 529, 147030.

[61]

Pan, S. J.; Kong, X. B.; Zhang, Q. X.; Xu, Q. J.; Wang, M. J.; Wei, C. C.; Zhao, Y.; Zhang, X. D. Rational modulating electronegativity of substituents in amorphous metal–organic frameworks for water oxidation catalysis. Int. J. Hydrogen Energy 2020, 45, 9723–9732.

[62]

Li, L.; Li, G. L.; Zhang, Y. P.; Ouyang, W. J.; Zhang, H. W.; Dong, F. F.; Gao, X. H.; Lin, Z. Fabricating nano-IrO2@amorphous Ir-MOF composites for efficient overall water splitting: A one-pot solvothermal approach. J. Mater. Chem. A 2020, 8, 25687–25695.

[63]

Zhao, Q. Y.; Lin, X.; Zhou, J.; Zhao, C.; Zheng, D. H.; Song, S. Z.; Jing, C.; Zhang, L. J.; Wang, J. Q. A tunable amorphous heteronuclear iron and cobalt imidazolate framework analogue for efficient oxygen evolution reactions. Eur. J. Inorg. Chem. 2021, 2021, 702–707.

[64]

Yang, F.; Li, W. Y.; Tang, B. H. J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 2018, 733, 8–14.

[65]

Zhao, M. M.; Zhao, Q. X.; Qiu, J. Q.; Lu, X.; Zhang, G. X.; Xue, H, G.; Pang, H. Amorphous cobalt coordination nanolayers incorporated with silver nanowires: A new electrode material for supercapacitors. Part. Part. Syst. Charact. 2017, 34, 1600412.

[66]

Xu, F.; Chen, N.; Fan, Z. Y.; Du, G. P. Ni/Co-based metal organic frameworks rapidly synthesized in ambient environment for high energy and power hybrid supercapacitors. Appl. Surf. Sci. 2020, 528, 146920.

[67]

Xu, F.; Zhou, Y. P.; Zhai, X. W.; Zhang, H. J.; Liu, H. D.; Ang, E. H.; Lu, Y. F.; Nie, Z. T.; Zhou, M.; Zhu, J. X. Ultrafast universal fabrication of metal–organic complex nanosheets by Joule heating engineering. Small Methods 2022, 6, 2101212.

[68]

Han, J.; Gao, S.; Wang, R. X.; Wang, K. L.; Jiang, M.; Yan, J.; Jiang, K. Thermal modulation of MOF and its application in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 46792–46799.

[69]

Feng, L.; Wang, K. Y.; Day, G. S.; Ryder, M. R.; Zhou, H. C. Destruction of metal–organic frameworks: Positive and negative aspects of stability and lability. Chem. Rev. 2020, 120, 13087–13133.

[70]

Gao, C. W.; Wang, P. X.; Wang, Z. Y.; Kær, S. K.; Zhang, Y. F.; Yue, Y. Z. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy 2019, 65, 104032.

[71]

Liu, J. W.; Xie, D. X.; Xu, X. F.; Jiang, L. Z.; Si, R.; Shi, W.; Cheng, P. Reversible formation of coordination bonds in Sn-based metal–organic frameworks for high-performance lithium storage. Nat. Commun. 2021, 12, 3131.

[72]

Zhou, M.; Xu, Y.; Xiang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater. 2016, 6, 1600448.

[73]

Zheng, W. R.; Lee, L. Y. S. Metal–organic frameworks for electrocatalysis: Catalyst or precatalyst? ACS Energy Lett. 2021, 6, 2838–2843.

[74]

Liu, Z. J.; Zheng, F. F.; Xiong, W. W.; Li, X. G.; Yuan, A. H.; Pang, H. Strategies to improve electrochemical performances of pristine metal–organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat 2021, 2, 488–518.

[75]

Yang, C.; Xin, S.; Mai, L. Q.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974.

[76]

Wang, B. Q.; Han, X.; Guo, C.; Jing, J.; Yang, C.; Li, Y. P.; Han, A. J.; Wang, D. S.; Liu, J. F. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 298, 120580.

[77]

Wang, B. Q.; Shang, J.; Guo, C.; Zhang, J. Z.; Zhu, F. N.; Han, A. J.; Liu, J. F. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays. Small 2019, 15, 1804761.

[78]

Vogt, C.; Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022, 6, 89–111.

[79]

Zhao, E. W.; Jónsson, E.; Jethwa, R. B.; Hey, D.; Lyu, D.; Brookfield, A.; Klusener, P. A. A.; Collison, D.; Grey, C. P. Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries. J. Am. Chem. Soc. 2021, 143, 1885–1895.

[80]

Zhang, W.; Peng, J.; Hua, W. B.; Liu, Y.; Wang, J. S.; Liang, Y. R.; Lai, W. H.; Jiang, Y.; Huang, Y.; Zhang, W. et al. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2100757.

[81]

Liu, X.; Tong, Y.; Wu, Y. J.; Zheng, J. F.; Sun, Y. J.; Li, H. Y. In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small Methods 2021, 5, 2101130.

[82]

Yan, Y.; Cheng, C.; Zhang, L.; Li, Y.; Lu, J. Deciphering the reaction mechanism of lithium-sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater. 2019, 9, 1900148.

[83]

Zhang, J.; Liu, Y. C.; Liu, H.; Song, Y. Z.; Sun, S. D.; Li, Q.; Xing, X. R.; Chen, J. Urchin-like Fe3Se4 hierarchitectures: A novel pseudocapacitive sodium-ion storage anode with prominent rate and cycling properties. Small 2020, 16, 2000504.

[84]

Li, M.; Liu, W. W.; Luo, D.; Chen, Z. W.; Amine, K.; Lu, J. Evidence of morphological change in sulfur cathodes upon irradiation by synchrotron X-rays. ACS Energy Lett. 2022, 7, 577–582.

[85]

Zhang, Y. R.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z. et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Environ. Sci. 2020, 13, 183–199.

[86]

Garcia, A. C.; Touzalin, T.; Nieuwland, C.; Perini, N.; Koper, M. T. M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem., Int. Ed. 2019, 58, 12999–13003.

[87]

Zheng, Z. M.; Wu, H. H.; Liu, H. D.; Zhang, Q. B.; He, X.; Yu, S. C.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P. et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 2020, 14, 9545–9561.

[88]

Zhang, P.; Han, B.; Yang, X. M.; Zou, Y. C.; Lu, X. Z.; Liu, X.; Zhu, Y. M.; Wu, D. J.; Shen, S. C.; Li, L. et al. Revealing the intrinsic atomic structure and chemistry of amorphous LiO2-containing products in Li-O2 batteries using cryogenic electron microscopy. J. Am. Chem. Soc. 2022, 144, 2129–2136.

[89]

Özdogru, B.; Cha, Y.; Gwalani, B.; Murugesan, V.; Song, M. K.; Çapraz, Ö. Ö. In situ probing potassium-ion intercalation-induced amorphization in crystalline iron phosphate cathode materials. Nano Lett. 2021, 21, 7579–7586.

[90]

Palaniselvam, T.; Mukundan, C.; Hasa, I.; Santhosha, A. L.; Goktas, M.; Moon, H.; Ruttert, M.; Schmuch, R.; Pollok, K.; Langenhorst, F. et al. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv. Funct. Mater. 2020, 30, 2004798.

[91]

Liu, X. S.; Zheng, B. Z.; Zhao, J.; Zhao, W. M.; Liang, Z. T.; Su, Y.; Xie, C. P.; Zhou, K.; Xiang, Y. X.; Zhu, J. P. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 2021, 11, 2003583.

[92]

Lyu, Y.; Zheng, J. Y.; Xiao, Z. H.; Zhao, S. Y.; Jiang, S. P.; Wang, S. Y. Identifying the intrinsic relationship between the restructured oxide layer and oxygen evolution reaction performance on the cobalt Pnictide catalyst. Small 2020, 16, 1906867.

[93]

Deng, C.; Wang, H. Q.; Wang, S. P. Clarifying the lithium storage behavior of MoS2 with in situ electrochemical impedance spectroscopy. J. Mater. Chem. A 2021, 9, 15734–15743.

[94]

Zhang, W.; Seo, D. H.; Chen, T.; Wu, L. J.; Topsakal, M.; Zhu, Y. M.; Lu, D. Y.; Ceder, G.; Wang, F. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 2020, 367, 1030–1034.

[95]

Gong, X. Y.; Gnanasekaran, K.; Ma, K. K.; Forman, C. J.; Wang, X. J.; Su, S. Y.; Farha, O. K.; Gianneschi, N. C. Rapid generation of metal–organic framework phase diagrams by high-throughput transmission electron microscopy. J. Am. Chem. Soc. 2022, 144, 6674–6680.

Publication history
Copyright
Acknowledgements

Publication history

Received: 27 June 2022
Revised: 30 August 2022
Accepted: 29 September 2022
Published: 14 November 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge supports from the National Key R&D Program of China (No. 2021YFA1501502), the National Natural Science Foundation of China (Nos. 22075263 and 52002366), and the Fundamental Research Funds for the Central Universities (No. WK2060000039).

Return