Journal Home > Volume 16 , Issue 4

Renewable energy powered electrocatalytic water splitting is a promising strategy for hydrogen generation, and the design and development of high-efficiency and earth-abundant electrocatalysts for hydrogen evolution reaction (HER) are highly desirable. Herein, MoS2 nanoflowers decorated two-dimensional carbonitride-based MXene Ti3CN(OH)x hybrids have been constructed by etching and post-hydrothermal methods. The electrochemical performance of the as-obtained Ti3CN(OH)x@MoS2 hybrids having a quasi core–shell structure is fascinating: An overpotential of 120 mV and a Tafel slope of 64 mV∙dec−1 can be delivered at a current density of 10 mA∙cm−2. And after 3,000 cyclic voltammetry cycles, it can be seen that there is no apparent attenuation. Both the experimental results and density functional theory (DFT) calculations indicate that the synergetic effects between Ti3CN(OH)x and MoS2 are responsible for the robust electrochemical HER performance. The electrons of –OH group in Ti3CN(OH)x are transferred to MoS2, making the adsorption energy of the composite for H almost vanish. The metallic Ti3CN(OH)x is also beneficial to the fast charge transfer kinetics. The construction of MXene-based hybrids with optimal electronic structure and unique morphology tailored to the applications can be further used in other promising energy storage and conversion devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbonitride MXene Ti3CN(OH)x@MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution

Show Author's information Jizhou Jiang1Fangyi Li1Saishuai Bai1Yongjing Wang1Kun Xiang1( )Haitao Wang1Jing Zou1Jyh-Ping Hsu2( )
School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, China
Department of Chemical Engineering, “National Taiwan University”, Taipei 10617

Abstract

Renewable energy powered electrocatalytic water splitting is a promising strategy for hydrogen generation, and the design and development of high-efficiency and earth-abundant electrocatalysts for hydrogen evolution reaction (HER) are highly desirable. Herein, MoS2 nanoflowers decorated two-dimensional carbonitride-based MXene Ti3CN(OH)x hybrids have been constructed by etching and post-hydrothermal methods. The electrochemical performance of the as-obtained Ti3CN(OH)x@MoS2 hybrids having a quasi core–shell structure is fascinating: An overpotential of 120 mV and a Tafel slope of 64 mV∙dec−1 can be delivered at a current density of 10 mA∙cm−2. And after 3,000 cyclic voltammetry cycles, it can be seen that there is no apparent attenuation. Both the experimental results and density functional theory (DFT) calculations indicate that the synergetic effects between Ti3CN(OH)x and MoS2 are responsible for the robust electrochemical HER performance. The electrons of –OH group in Ti3CN(OH)x are transferred to MoS2, making the adsorption energy of the composite for H almost vanish. The metallic Ti3CN(OH)x is also beneficial to the fast charge transfer kinetics. The construction of MXene-based hybrids with optimal electronic structure and unique morphology tailored to the applications can be further used in other promising energy storage and conversion devices.

Keywords: MoS2, hydrogen evolution reaction, density functional theory (DFT) calculations, Ti3CN(OH)x

References(47)

[1]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[2]

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

[3]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[4]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[5]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[6]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[7]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[8]

Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

[9]

Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.; Jiang J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

[10]

Jiang, J. Z.; Ouyang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.

[11]

Bai, S. S.; Yang, M. Q.; Jiang, J. Z.; He, X. M.; Zou, J.; Xiong, Z. G.; Liao, G. D.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5, 78.

[12]

Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

[13]

Jiang, J. Z.; Zou, Y. L.; Arramel, Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

[14]

Zeng, Z. L.; Chen, X. Z.; Weng, K. Y.; Wu, Y.; Zhang, P.; Jiang, J. Z.; Li, N. Computational screening study of double transition metal carbonitrides M’2M”CNO2-MXene as catalysts for hydrogen evolution reaction. npj Comput. Mater. 2021, 7, 80.

[15]

Ding, B.; Ong, W. J.; Jiang, J. Z.; Chen, X. Z.; Li, N. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Appl. Surf. Sci. 2020, 500, 143987.

[16]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[17]

Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

[18]

Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

[19]

Jiang, Y. N.; Sun, T.; Xie, X.; Jiang, W.; Li, J.; Tian, B. B.; Su, C. L. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019, 12, 1368–1373.

[20]

Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano 2020, 14, 16140–16155.

[21]

Du, C. F.; Dinh, K. N.; Liang, Q. H.; Zheng, Y.; Luo, Y. B.; Zhang, J. L.; Yan, Q. Y. Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 2018, 8, 1801127.

[22]

Wang, H.; Lee, J. M. Recent advances in structural engineering of MXene electrocatalysts. J. Mater. Chem. A 2020, 8, 10604–10624.

[23]

Wang, J. Y.; He, P. L.; Shen, Y. L.; Dai, L. X.; Li, Z.; Wu, Y.; An, C. H. FeNi nanoparticles on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting. Nano Res. 2021, 14, 3474–3481.

[24]

Yan, L.; Zhang, B. Rose-like, ruthenium-modified cobalt nitride nanoflowers grown in situ on an MXene matrix for efficient and stable water electrolysis. J. Mater. Chem. A 2021, 9, 20758–20765.

[25]

Li, S. X.; Que, X. Y.; Chen, X. B.; Lin, T. R.; Sheng, L.; Peng, J.; Li, J. Q.; Zhai, M. L. One-step synthesis of modified Ti3C2 MXene-supported amorphous molybdenum sulfide electrocatalysts by a facile gamma radiation strategy for efficient hydrogen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 10882–10891.

[26]

Kuang, P. Y.; He, M.; Zhu, B. C.; Yu, J. G.; Fan, K.; Jaroniec, M. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. J. Catal. 2019, 375, 8–20.

[27]

Yan, L.; Zhang, B.; Wu, S. Y.; Yu, J. L. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. J. Mater. Chem. A 2020, 8, 14234–14242.

[28]

Zong, H.; Qi, R. J.; Yu, K.; Zhu, Z. Q. Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim. Acta 2021, 393, 139068.

[29]

Wang, H.; Lin, Y. P.; Liu, S. Y.; Li, J. M.; Bu, L. M.; Chen, J. M.; Xiao, X.; Choi, J. H.; Gao, L. J.; Lee, J. M. Confined growth of pyridinic N-Mo2C sites on MXenes for hydrogen evolution. J. Mater. Chem. A 2020, 8, 7109–7116.

[30]

Shen, B. F.; Huang, H. J.; Jiang, Y.; Xue, Y.; He, H. Y. 3D interweaving MXene-graphene network-confined Ni-Fe layered double hydroxide nanosheets for enhanced hydrogen evolution. Electrochim. Acta 2022, 407, 139913.

[31]

Deng, L. Q.; Chang, B.; Shi, D.; Yao, X. G.; Shao, Y. L.; Shen, J. X.; Zhang, B. G.; Wu, Y. Z.; Hao, X. P. MXene decorated by phosphorus-doped TiO2 for photo-enhanced electrocatalytic hydrogen evolution reaction. Renew. Energy 2021, 170, 858–865.

[32]

Shinde, P. V.; Mane, P.; Chakraborty, B.; Rout, C. S. Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: Experiments and theories. J. Colloid Interface Sci. 2021, 602, 232–241.

[33]

Liu, D.; Lv, Z. P.; Dang, J.; Ma, W. S.; Jian, K. L.; Wang, M.; Huang, D. J.; Tian, W. Q. Nitrogen-doped MoS2/Ti3C2Tx heterostructures as ultra-efficient alkaline HER electrocatalysts. Inorg. Chem. 2021, 60, 9932–9940.

[34]

Huang, H. J.; Xue, Y.; Xie, Y. S.; Yang, Y.; Yang, L.; He, H. Y.; Jiang, Q. G.; Ying, G. B. MoS2 quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts. Inorg. Chem. Front. 2022, 9, 1171–1178.

[35]

Lin, H.; Chen, L. S.; Lu, X. Y.; Yao, H. L.; Chen, Y.; Shi, J. L. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2019, 62, 662–670.

[36]

Zheng, X.; Wang, Z. L.; Li, J. J.; Wei, L. M. Binder-free S@Ti3C2Tx sandwich structure film as a high-capacity cathode for a stable aluminum-sulfur battery. Sci. China Mater. 2022, 65, 1463–1475.

[37]

Xu, H. Y.; Zheng, R. X.; Du, D. Y.; Ren, L. F.; Li, R. J.; Wen, X. J.; Zhao, C.; Zeng, T.; Zhou, B.; Shu, C. Z. Cationic vanadium vacancy-enriched V2−xO5 on V2C MXene as superior bifunctional electrocatalysts for Li-O2 batteries. Sci. China Mater. 2022, 65, 1761–1770.

[38]

He, F. Y.; Tang, C.; Zhu, G. J.; Liu, Y. D.; Du, A. J.; Zhang, Q. B.; Wu, M. H.; Zhang, H. J. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci. China Chem. 2021, 64, 964–973.

[39]

Cao, P. F.; Peng, J.; Li, J. Q.; Zhai, M. L. Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction. J. Power Sources 2017, 347, 210–219.

[40]

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

[41]

Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 2020, 30, 0190302.

[42]

Zhang, J. P.; Li, Y. X.; Xu, C. Y.; Li, J.; Yang, L. Y.; Yin, S. G. 2D/2D/1D structure of a self-supporting electrocatalyst for efficient hydrogen evolution. ACS Appl. Energy Mater. 2022, 5, 1710–1719.

[43]

Wang, H. Q.; Wang, J. W.; Wang, X. Z.; Gao, X. H.; Zhuang, G. C.; Yang, J. B.; Ren, H. Dielectric properties and energy storage performance of PVDF-based composites with MoS2@MXene nanofiller. Chem. Eng. J. 2022, 437, 135431.

[44]

Bai, J.; Zhao, B. C.; Lin, S.; Li, K. Z.; Zhou, J. F.; Dai, J. M.; Zhu, X. B.; Sun, Y. P. Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries. Nanoscale 2020, 12, 1144–1154.

[45]

Zhang, Y.; Huang, Y.; Zhu, S. S.; Liu, Y. Y.; Zhang, X.; Wang, J. J.; Braun, A. Covalent S–O bonding enables enhanced photoelectrochemical performance of Cu2S/Fe2O3 heterojunction for water splitting. Small 2021, 17, 2100320.

[46]

Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater., 2019, 31, 1903841.

[47]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

File
12274_2022_5112_MOESM1_ESM.pdf (753.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2022
Revised: 28 September 2022
Accepted: 28 September 2022
Published: 19 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62004143 and 21902108), the Key Research and Development (R&D) Program of Hubei Province (No. 2022BAA084), the Central Government Guided Local Science and Technology Development Special Fund Project (No. 2020ZYYD033), the Natural Science Foundation of Hubei Province (No. 2021CFB133), and the Knowledge Innovation Program of Wuhan-Shuguang Project (No. 2022010801020355).

Return