Journal Home > Volume 16 , Issue 1

Microwave absorbing materials (MAMs) has been intensively investigated in order to meet the requirement of electromagnetic radiation control, especially in S and C band. In this work, FeCo-based magnetic MAMs are hydrothermally synthesized via a magnetic-field-induced process. The composition and morphology of the MAMs are capable of being adjusted simultaneously by the atomic ratio of Fe2+ to Co2+ in the precursor. The hierarchical magnetic microchain, which has a core–shell structure of two-dimensional FexCo1−xOOH nanosheets anchored vertically on the surface of a one-dimensional (1D) Co microchain, shows significantly enhanced microwave absorption in C band, resulting in a reflection loss (RL) of lower than −20 dB at frequencies ranging from 4.4 to 8.0 GHz under a suitable matching thickness. The magnetic coupling of Co microcrystals and the double-loss mechanisms out of the core-shell structure are considered to promote the microwave attenuation capability. The hierarchical design of 1D magnetic MAMs provides a feasible strategy to solve the electromagnetic pollution in C band.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band

Show Author's information Yixuan Han1Mukun He1Jinwen Hu2Panbo Liu1Zhongwu Liu2Zhonglei Ma1Wenbo Ju2( )Junwei Gu1( )
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
School of Physics and Optoelectronics, and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

Microwave absorbing materials (MAMs) has been intensively investigated in order to meet the requirement of electromagnetic radiation control, especially in S and C band. In this work, FeCo-based magnetic MAMs are hydrothermally synthesized via a magnetic-field-induced process. The composition and morphology of the MAMs are capable of being adjusted simultaneously by the atomic ratio of Fe2+ to Co2+ in the precursor. The hierarchical magnetic microchain, which has a core–shell structure of two-dimensional FexCo1−xOOH nanosheets anchored vertically on the surface of a one-dimensional (1D) Co microchain, shows significantly enhanced microwave absorption in C band, resulting in a reflection loss (RL) of lower than −20 dB at frequencies ranging from 4.4 to 8.0 GHz under a suitable matching thickness. The magnetic coupling of Co microcrystals and the double-loss mechanisms out of the core-shell structure are considered to promote the microwave attenuation capability. The hierarchical design of 1D magnetic MAMs provides a feasible strategy to solve the electromagnetic pollution in C band.

Keywords: hierarchical structure, one-dimensional micromagnets, microwave absorbing material, magnetic coupling, double-loss mechanisms

References(44)

[1]

Zhang, F.; Jia, Z. R.; Wang, Z.; Zhang, C. H.; Wang, B. B.; Xu, B. H.; Liu, X. H.; Wu, G. L. Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Mater. Today Phys. 2021, 20, 100475.

[2]

Yang, K.; Cui, Y. H.; Liu, Z. H.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308.

[3]

Wei, H. J.; Tian, Y.; Chen, Q.; Estevez, D.; Xu, P.; Peng, H. X.; Qin, F. X. Microwave absorption performance of 2D iron-quinoid MOF. Chem. Eng. J. 2021, 405, 126637.

[4]

Yuan, M. Y.; Zhao, B.; Yang, C. D.; Pei, K.; Wang, L. Y.; Zhang, R. X.; You, W. B.; Liu, X. H.; Zhang, X. F.; Che, R. C. Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 2022, 32, 2203161.

[5]

Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

[6]

Elmahaishi, M. F.; Azis, R. S.; Ismail, I.; Muhammad, F. D. A review on electromagnetic microwave absorption properties: Their materials and performance. J. Mater. Res. Technol. 2022, 20, 2188–2220.

[7]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[8]

Zhang, M. M.; Zhang, J. W.; Lv, X. Y.; Zhang, L.; Wei, Y.; Liu, S. C.; Shi, Y. P.; Gong, C. H. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: Less might be better. J. Mater. Sci. Mater. Electron. 2018, 29, 5496–5500.

[9]

Cai, Z. X.; Su, L.; Wang, H. J.; Xie, Q.; Gao, H. F.; Niu, M.; Lu, D. Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction. Carbon 2022, 191, 227–235.

[10]

Gao, X. H.; Wu, X. Y.; Qiu, J. High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles. Adv. Electron. Mater. 2018, 4, 1700565.

[11]

Wen, F. S.; Zhang, F.; Liu, Z. Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 2011, 115, 14025–14030.

[12]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[13]

Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

[14]

Cheng, Y.; Ji, G. B.; Li, Z. Y.; Lv, H. L.; Liu, W.; Zhao, Y.; Cao, J. M.; Du, Y. W. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio. J. Alloys Compd. 2017, 704, 289–295.

[15]

Huang, L.; Li, J. J.; Wang, Z. J.; Li, Y. B.; He, X. D.; Yuan, Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 2019, 143, 507–516.

[16]

Xiang, J.; Zhang, X. H.; Ye, Q.; Li, J. L.; Shen, X. Q. Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption. Mater. Res. Bull. 2014, 60, 589–595.

[17]

Wu, H. J.; Zhao, Z. H.; Wu, G. L. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci. 2020, 566, 21–32.

[18]

Afghahi, S. S. S.; Shokuhfar, A. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. J. Magn. Magn. Mater. 2014, 370, 37–44.

[19]

Liang, X. H.; Man, Z. M.; Quan, B.; Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.

[20]

Zare, Y.; Shams, M. H.; Jazirehpour, M. Tuning microwave permittivity coefficients for enhancing electromagnetic wave absorption properties of FeCo alloy particles by means of sodium stearate surfactant. J. Alloys Compd. 2017, 717, 294–302.

[21]

Zhang, T.; Zhao, D. C.; Wang, L. J.; Meng, R.; Zhao, H.; Zhou, P. Y.; Xia, L.; Zhong, B.; Wang, H. T.; Wen, G. W. A facile precursor pyrolysis route to bio-carbon/ferrite porous architecture with enhanced electromagnetic wave absorption in S-band. J. Alloys Compd. 2020, 819, 153269.

[22]

Huang, Z. H.; Cheng, J. Y.; Zhang, H. B.; Xiong, Y. F.; Zhou, Z. X.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Cao, M. S. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 2022, 107, 155–164.

[23]

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

[24]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[25]

Shi, X. F.; You, W. B.; Li, X.; Wang, L.; Shao, Z. Z.; Che, R. C. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chem. Eng. J. 2021, 415, 128951.

[26]

Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

[27]

Sun, X. X.; Yang, M. L.; Yang, S.; Wang, S. S.; Yin, W. L.; Che, R. C.; Li, Y. B. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019, 15, 1902974.

[28]

Zhang, X.; Dong, Y. Y.; Pan, F.; Xiang, Z.; Zhu, X. J.; Lu, W. Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high-performance microwave absorbers. Carbon 2021, 177, 332–343.

[29]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[30]

Zhang, L.; He, R.; Gu, H. C. Synthesis and kinetic shape and size evolution of magnetite nanoparticles. Mater. Res. Bull. 2006, 41, 260–267.

[31]

Karipoth, P.; Thirumurugan, A.; Velaga, S.; Greneche, J. M.; Joseyphus, R. J. Magnetic properties of FeCo alloy nanoparticles synthesized through instant chemical reduction. J. Appl. Phys. 2016, 120, 123906.

[32]

Zhou, J.; Shu, X. F.; Wang, Z. C.; Liu, Y.; Wang, Y. Q.; Zhou, C.; Kong, L. B. Hydrothermal synthesis of polyhedral FeCo alloys with enhanced electromagnetic absorption performances. J. Alloys Compd. 2019, 794, 68–75.

[33]

Deng, J. S.; Zhang, X.; Zhao, B.; Bai, Z. Y.; Wen, S. M.; Li, S. M.; Li, S. Y.; Yang, J.; Zhang, R. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 2018, 6, 7128–7140.

[34]

Aguilera, L.; Aguiar, P. C. M.; Ruiz, Y. L.; Almeida, A.; Moreira, J. A.; Passos, R. R.; Pocrifka, L. A. Electrochemical synthesis of γ-CoOOH films from α-Co(OH)2 with a high electrochemical performance for energy storage device applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3084–3091.

[35]

Hu, E. L.; Yao, Y.; Cui, Y. J.; Wang, Z. Y.; Qian, G. D. Designed construction of hierarchical CoOOH@Co-FeOOH double-shelled arrays as superior water oxidation electrocatalyst. J. Solid State Chem. 2021, 294, 121867.

[36]

Kuhrt, C.; Schultz, L. Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co and Fe-Ni. J. Appl. Phys. 1993, 73, 6588–6590.

[37]

Wei, H. Y.; Zhang, Z. P.; Hussain, G.; Zhou, L. S.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596.

[38]

Dou, Y. H.; He, C. T.; Zhang, L.; Yin, H. J.; Al-Mamun, M.; Ma, J. M.; Zhao, H. J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat. Commun. 2020, 11, 1664.

[39]

Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672–2676.

[40]

Gao, S.; Zhang, G. Z.; Wang, Y.; Han, X. P.; Huang, Y.; Liu, P. B. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 88, 56–65.

[41]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

[42]

Ma, Z. L.; Xiang, X. L.; Shao. L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[43]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[44]

Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Gaecia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133.

File
12274_2022_5111_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 September 2022
Revised: 27 September 2022
Accepted: 28 September 2022
Published: 12 October 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

The authors are grateful for the supports from the National Natural Science Foundation of China (No. U21A2093). This work was also financially supported by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars. We would also like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and XPS tests.

Return