Journal Home > Volume 16 , Issue 1

High stability and efficient charge separation are two critical factors to construct high-performance photocatalysts. Here, an efficient strategy was provided to fabricate the nanocomposite of graphitic carbon nitride/ferroferric oxide/reduced graphene oxide (g-C3N4/Fe3O4/RGO). The degradation of rhodamine B (RhB) by g-C3N4/Fe3O4/RGO nanocomposite followed the pseudo-first-order kinetics. The g-C3N4/Fe3O4/RGO nanocomposite exhibited excellent stability and magnetically separable performance. It was ascertained that the quantum efficiency and separation efficiency of photoexcited charge carriers of g-C3N4/Fe3O4/RGO nanocomposite were obviously improved. Particularly, the g-C3N4/Fe3O4/RGO nanocomposite with 3 wt.% RGO presented 100% degradation efficiency under visible light irradiation for 75 min. The remarkable photocatalytic degradation activity is attributed to the synergistic interactions among g-C3N4, Fe3O4, and RGO, along with the efficient interfacial charge separation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst

Show Author's information Juhua Luo1( )Ziyang Dai1Mengna Feng1Mingmin Gu1Yu Xie2( )
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China

Abstract

High stability and efficient charge separation are two critical factors to construct high-performance photocatalysts. Here, an efficient strategy was provided to fabricate the nanocomposite of graphitic carbon nitride/ferroferric oxide/reduced graphene oxide (g-C3N4/Fe3O4/RGO). The degradation of rhodamine B (RhB) by g-C3N4/Fe3O4/RGO nanocomposite followed the pseudo-first-order kinetics. The g-C3N4/Fe3O4/RGO nanocomposite exhibited excellent stability and magnetically separable performance. It was ascertained that the quantum efficiency and separation efficiency of photoexcited charge carriers of g-C3N4/Fe3O4/RGO nanocomposite were obviously improved. Particularly, the g-C3N4/Fe3O4/RGO nanocomposite with 3 wt.% RGO presented 100% degradation efficiency under visible light irradiation for 75 min. The remarkable photocatalytic degradation activity is attributed to the synergistic interactions among g-C3N4, Fe3O4, and RGO, along with the efficient interfacial charge separation.

Keywords: graphitic carbon nitride, reduced graphene oxide, ferroferric oxide, visible light photocatalyst

References(50)

[1]

Wang, G. L.; Bi, W. X.; Zhang, Q. M.; Dong, X. L.; Zhang, X. F. Hydrothermal carbonation carbon-based photocatalysis under visible light: Modification for enhanced removal of organic pollutant and novel insight into the photocatalytic mechanism. J. Hazard. Mater. 2022, 426, 127821.

[2]

Zhu, Z. H.; Liu, Y. B.; Song, C.; Hu, Y. T.; Feng, G. X.; Tang, B. Z. Porphyrin-based two-dimensional layered metal–organic framework with sono-/photocatalytic activity for water decontamination. ACS Nano 2022, 16, 1346–1357.

[3]

Grčić, I.; Puma, G. L. Six-flux absorption-scattering models for photocatalysis under wide-spectrum irradiation sources in annular and flat reactors using catalysts with different optical properties. Appl. Catal. B Environ. 2017, 211, 222–234.

[4]

Wong, K. T.; Kim, S. C.; Yun, K.; Choong, C. E.; Nah, I. W.; Jeon, B. H.; Yoon, Y.; Jang, M. Understanding the potential band position and e/h+ separation lifetime for Z-scheme and type-II heterojunction mechanisms for effective micropollutant mineralization: Comparative experimental and DFT studies. Appl. Catal. B Environ. 2020, 273, 119034.

[5]

Martin, S. S.; Rivero, M. J.; Ortiz, I. Unravelling the mechanisms that drive the performance of photocatalytic hydrogen production. Catalysts 2020, 10, 901.

[6]

Zhao, Z. W.; Sun, Y. J.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37.

[7]

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

[8]

Yang, L.; Bai, X.; Shi, J.; Du, X. Y.; Xu, L.; Jin, P. K. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants. Appl. Catal. B Environ. 2019, 256, 117759.

[9]

Kumar, A.; Raizada, P.; Singh, P.; Saini, R. V.; Saini, A. K.; Hosseini-Bandegharaei, A. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem. Eng. J. 2020, 391, 123496.

[10]

Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D. Y.; Lim, J. H.; Singh, P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J. Ind. Eng. Chem. 2018, 67, 28–51.

[11]

Patnaik, S.; Martha, S.; Madras, G.; Parida, K. The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 28502–28514.

[12]

Liu, Y. F.; He, M. F.; Guo, R.; Fang, Z. R.; Kang, S. F.; Ma, Z.; Dong, M. D.; Wang, W. L.; Cui, L. F. Ultrastable metal-free near-infrared-driven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6. Appl. Catal. B Environ. 2020, 260, 118137.

[13]

Wu, J. J.; Zhang, Y. F.; Zhou, J. S.; Wang, K. N.; Zheng, Y. Z.; Tao, X. Uniformly assembling n-type metal oxide nanostructures (TiO2 nanoparticles and SnO2 nanowires) onto P doped g-C3N4 nanosheets for efficient photocatalytic water splitting. Appl. Catal. B Environ. 2020, 278, 119301.

[14]

Zhao, Z. R.; Zhang, W. Y.; Shen, X. L.; Muhmood, T.; Xia, M. Z.; Lei, W.; Wang, F. Y.; Khan, M. A. Preparation of g-C3N4/TiO2/BiVO4 composite and its application in photocatalytic degradation of pollutant from TATB production under visible light irradiation. J. Photochem. Photobio. A Chem. 2018, 358, 246–255.

[15]

Raizada, P.; Thakur, P.; Sudhaik, A.; Singh, P.; Thakur, V. K.; Hosseini-Bandegharaei, A. Fabrication of dual Z-scheme photocatalyst via coupling of BiOBr/Ag/AgCl heterojunction with P and S co-doped g-C3N4 for efficient phenol degradation. Arab. J. Chem. 2020, 13, 4538–4552.

[16]

Mirzaei, A.; Yerushalmi, L.; Chen, Z.; Haghighat, F. Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J. Hazard. Mater. 2018, 359, 516–526.

[17]

Wang, Q.; Zhang, L. X.; Guo, Y. K.; Shen, M.; Wang, M.; Li, B.; Shi, J. L. Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction. Chem. Eng. J. 2020, 396, 125347.

[18]

Sun, J. Y.; Guo, Y. P.; Wang, Y.; Cao, D.; Tian, S. C.; Xiao, K.; Mao, R.; Zhao, X. H2O2 assisted photoelectrocatalytic degradation of diclofenac sodium at g-C3N4/BiVO4 photoanode under visible light irradiation. Chem. Eng. J. 2018, 332, 312–320.

[19]

Hasija, V.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P. Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2,4-dinitrophenol. J. Environ. Chem. Eng. 2019, 7, 103272.

[20]

Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 2020, 13, 3498–3520.

[21]

Raizada, P.; Kumari, J.; Shandilya, P.; Singh, P. Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4 nanocomposite in simulated wastewater. Desalin. Water Treat. 2017, 79, 204–213.

[22]

Sonu; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Gupta, V. K.; Singh, P. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 2019, 23, 1119–1136.

[23]

Raizada, P.; Sudhaik, A.; Singh, P.; Shandilya, P.; Thakur, P.; Jung, H. Visible light assisted photodegradation of 2,4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater. Arab. J. Chem. 2020, 13, 3196–3209.

[24]

Sun, M.; Zeng, Q.; Zhao, X.; Shao, Y.; Ji, P. G.; Wang, C. Q.; Yan, T.; Du, B. Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: Enhanced charge separation and excellent visible-light driven photocatalytic activity. J. Hazard. Mater. 2017, 339, 9–21.

[25]

Li, Y. F.; Fang, L.; Jin, R. X.; Yang, Y.; Fang, X.; Xing, Y.; Song, S. Y. Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale 2015, 7, 758–764.

[26]

Mishra, P.; Patnaik, S.; Parida, K. An overview of recent progress on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. Catal. Sci. Technol. 2019, 9, 916–941.

[27]

Mishra, P.; Behera, A.; Kandi, D.; Ratha, S.; Parida, K. Novel magnetic retrievable visible-light-driven ternary Fe3O4@NiFe2O4/phosphorus-doped g-C3N4 nanocomposite photocatalyst with significantly enhanced activity through a double-Z-scheme system. Inorg. Chem. 2020, 59, 4255–4272.

[28]

Shao, Y. Y.; Ye, W. D.; Sun, C. Y.; Liu, C. L.; Wang, Q.; Chen, C. C.; Gu, J. Y.; Chen, X. Q. Enhanced photoreduction degradation of polybromodiphenyl ethers with Fe3O4-g-C3N4 under visible light irradiation. RSC Adv. 2018, 8, 10914–10921.

[29]

Mansingh, S.; Acharya, R.; Martha, S.; Parida, K. M. Pyrochlore Ce2Zr2O7 decorated over rGO: A photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys. Chem. Chem. Phys. 2018, 20, 9872–9885.

[30]

Liu, C. Y.; Li, X.; Li, J. Z.; Zhou, Y. J.; Sun, L. L.; Wang, H. Q.; Huo, P. W.; Ma, C. C.; Yan, Y. S. Fabricated 2D/2D CdIn2S4/N-rGO muti-heterostructure photocatalyst for enhanced photocatalytic activity. Carbon 2019, 152, 565–574.

[31]

Wu, Y. Q.; Wang, P.; Zhu, X. L.; Zhang, Q. Q.; Wang, Z. Y.; Liu, Y. Y.; Zou, G. Z.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342.

[32]

Mansingh, S.; Padhi, D. K.; Parida, K. Bio-surfactant assisted solvothermal synthesis of magnetic retrievable Fe3O4@rGO nanocomposite for photocatalytic reduction of 2-nitrophenol and degradation of TCH under visible light illumination. Appl. Surf. Sci. 2019, 466, 679–690.

[33]

Padhi, D. K.; Panigrahi, T. K.; Parida, K.; Singh, S. K.; Mishra, P. M. Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr(VI) reduction, phenol degradation, and antibacterial activity. ACS Sustainable Chem. Eng. 2017, 5, 10551–10562.

[34]

Yu, T.; Hu, Z. M.; Wang, H. M.; Tan, X. Enhanced visible-light-driven hydrogen evolution of ultrathin narrow-band-gap g-C3N4 nanosheets. J. Mater. Sci. 2020, 55, 2118–2128.

[35]

Wang, P. F.; Zhan, S. H.; Xia, Y. G.; Ma, S. L.; Zhou, Q. X.; Li, Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B Environ. 2017, 207, 335–346.

[36]

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding emi shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

[37]

Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 MXene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956.

[38]

Zhang, M. M.; Lai, C.; Li, B. S.; Huang, D. L.; Zeng, G. M.; Xu, P.; Qin, L.; Liu, S. Y.; Liu, X. G.; Yi, H. et al. Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight. J. Catal. 2019, 369, 469–481.

[39]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[40]

Yang, H. Z.; Shang. L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

[41]

Lee, D. E.; Devthade, V.; Moru, S.; Jo, W. K.; Tonda, S. Magnetically sensitive TiO2 hollow sphere/Fe3O4 core–shell hybrid catalyst for high-performance sunlight-assisted photocatalytic degradation of aqueous antibiotic pollutants. J. Alloys Compd. 2022, 902, 163612.

[42]

Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 1138–1142.

[43]

Guo, F.; Shi, W. L.; Guan, W. S.; Huang, H.; Liu, Y. Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Sep. Purif. Technol. 2017, 173, 295–303.

[44]

Li, X.; Liu, S. S.; Cao, D.; Mao, R.; Zhao, X. Synergetic activation of H2O2 by photo-generated electrons and cathodic Fenton reaction for enhanced self-driven photoelectrocatalytic degradation of organic pollutants. Appl. Catal. B Environ. 2018, 235, 1–8.

[45]

Zhu, L.; Kong, X. Q.; Yang, C. W.; Ren, B. X.; Tang, Q. Fabrication and characterization of the magnetic separation photocatalyst C-TiO2@Fe3O4/AC with enhanced photocatalytic performance under visible light irradiation. J. Hazard. Mater. 2020, 381, 120910.

[46]

Guo, H.; Niu, H. Y.; Liang, C.; Niu, C. G.; Huang, D. W.; Zhang, L.; Tang, N.; Yang, Y.; Feng, C. Y.; Zeng, G. M. Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 p–n heterostructure with rapid charge transfer assisted visible light photocatalysis. J. Catal. 2019, 370, 289–303.

[47]

Lin, X. H.; Wu, Y.; Xiang, J.; He, D.; Li, S. F. Y. Elucidation of mesopore-organic molecules interactions in mesoporous TiO2 photocatalysts to improve photocatalytic activity. Appl. Catal. B Environ. 2016, 199, 64–74.

[48]

Jiang, W. S.; Zong, X. P.; An, L.; Hua, S. X.; Miao, X.; Luan, S. L.; Wen, Y. J.; Tao, F. F.; Sun, Z. C. Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction. ACS Catal. 2018, 8, 2209–2217.

[49]

Zhu, T. T.; Song, Y. H.; Ji, H. Y.; Xu, Y. G.; Song, Y. X.; Xia, J. X.; Yin, S.; Li, Y. P.; Xu, H.; Zhang, Q. et al. Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J. 2015, 271, 96–105.

[50]

Tang, M. L.; Ao, Y. H.; Wang, C.; Wang, P. F. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation. Appl. Catal. B Environ. 2020, 270, 118918.

File
12274_2022_5110_MOESM1_ESM.pdf (513.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 August 2022
Revised: 26 September 2022
Accepted: 27 September 2022
Published: 02 November 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21667019 and 22066017).

Return