Journal Home > Volume 16 , Issue 4

Transition metal dichalcogenides (TMDs) have been regarded as promising cathodes for aqueous zinc-ion batteries (AZIBs) but suffer from sluggish reaction kinetics due to their poor conductivity and the strong electrostatic interaction between Zn-ion and cathode materials. Herein, a well-defined structure with MoSSe nanosheets vertically anchored on graphene is used as the cathode for AZIBs. The dissolution of Se into MoS2 lattice together with heterointerface design via developing C–O–Mo bonds improves the inherent conductivity, enlarges interlayer spacing, and generates abundant anionic vacancies. As a result, the Zn2+ intercalation/deintercalation process is greatly improved, which is confirmed by theoretical modeling and ex-situ experimental results. Remarkably, the assembled AZIBs exhibit high-rate capability (124.2 mAh·g−1 at 5 A·g−1) and long cycling life (83% capacity retention after 1,200 cycles at 2 A·g−1). Moreover, the assembled quasi-solid-state Zn-ion batteries demonstrate a stable cycling performance over 100 cycles and high capacity retention over 94% after 2,500 bending cycles. This study provides a new strategy to unlock the electrochemical activity of TMDs via interface design and atomic engineering, which can also be applied to other TMDs for multivalent batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Integrating molybdenum sulfide selenide-based cathode with C–O–Mo heterointerface design and atomic engineering for superior aqueous Zn-ion batteries

Show Author's information Hong Li1,2,3,4Biao Chen3,5Runhua Gao3Fugui Xu6Xinzhu Wen7( )Xiongwei Zhong3Chuang Li3Zhihong Piao3Nantao Hu4( )Xiao Xiao3Feng Shao4Guangmin Zhou3( )Jinlong Yang1( )
Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
School of Engineering and Technology College, Yang-en University, Quanzhou 362014, China

Abstract

Transition metal dichalcogenides (TMDs) have been regarded as promising cathodes for aqueous zinc-ion batteries (AZIBs) but suffer from sluggish reaction kinetics due to their poor conductivity and the strong electrostatic interaction between Zn-ion and cathode materials. Herein, a well-defined structure with MoSSe nanosheets vertically anchored on graphene is used as the cathode for AZIBs. The dissolution of Se into MoS2 lattice together with heterointerface design via developing C–O–Mo bonds improves the inherent conductivity, enlarges interlayer spacing, and generates abundant anionic vacancies. As a result, the Zn2+ intercalation/deintercalation process is greatly improved, which is confirmed by theoretical modeling and ex-situ experimental results. Remarkably, the assembled AZIBs exhibit high-rate capability (124.2 mAh·g−1 at 5 A·g−1) and long cycling life (83% capacity retention after 1,200 cycles at 2 A·g−1). Moreover, the assembled quasi-solid-state Zn-ion batteries demonstrate a stable cycling performance over 100 cycles and high capacity retention over 94% after 2,500 bending cycles. This study provides a new strategy to unlock the electrochemical activity of TMDs via interface design and atomic engineering, which can also be applied to other TMDs for multivalent batteries.

Keywords: anion vacancy, atomic engineering, Zn2+ kinetics, heterointerface design

References(35)

[1]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[2]

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

[3]

Fan, E. S.; Li, L.; Wang, Z. P.; Lin, J.; Huang, Y. X.; Yao, Y.; Chen, R. J.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063.

[4]

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

[5]

Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418.

[6]

Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec. 2018, 18, 459–479.

[7]

Yang, D.; Zhou, Y. P.; Geng, H. B.; Liu, C. T.; Lu, B.; Rui, X. H.; Yan, Q. Y. Pathways towards high energy aqueous rechargeable batteries. Coord. Chem. Rev. 2020, 424, 213521.

[8]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[9]

Lee, W. S. V.; Xiong, T.; Wang, X. P.; Xue, J. M. Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: A perspective. Small Methods 2021, 5, 2000815.

[10]

Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294.

[11]

Li, W.; Wang, K. L.; Cheng, S. J.; Jiang, K. An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 2019, 9, 1900993.

[12]

Hao, J. N.; Yuan, L. B.; Johannessen, B.; Zhu, Y. L.; Jiao, Y.; Ye, C.; Xie F. X.; Qiao, S. Z. Studying the conversion mechanism to broaden cathode options in aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2021, 133, 25318–25325.

[13]

Xu, W. W.; Sun, C. L.; Zhao, K. N.; Cheng, X.; Rawal, S.; Xu, Y.; Wang, Y. Defect engineering activating (boosting) zinc storage capacity of MoS2. Energy Storage Mater. 2019, 16, 527–534.

[14]

Xiao, P.; Li, H. B.; Fu, J. Z.; Zeng, C.; Zhao, Y. H.; Zhai, T. Y.; Li, H. Q. An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 2022, 15, 1638–1646.

[15]

Chen, B.; Chao, D. L.; Liu, E. Z.; Jaroniec, M.; Zhao, N. Q.; Qiao, S. Z. Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level. Energy Environ. Sci. 2020, 13, 1096–1131.

[16]

Wang, L. L.; Wu, Z. X.; Jiang, M. J. H.; Lu, J. Y.; Huang, Q. H.; Zhang, Y.; Fu, L. J.; Wu, M.; Wu, Y. P. Layered VSe2: A promising host for fast zinc storage and its working mechanism. J. Mater. Chem. A 2020, 8, 9313–9321.

[17]

Pu, X. M.; Song, T. B.; Tang, L. B.; Tao, Y. Y.; Cao, T.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. J. Power Sources 2019, 437, 226917.

[18]

He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 2017, 7, 1601920.

[19]

Chen, B.; Wang, D. S.; Tan, J. Y.; Liu, Y. Q.; Jiao, M. L.; Liu, B. L.; Zhao, N. Q.; Zou, X. L.; Zhou, G. M.; Cheng, H. M. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J. Am. Chem. Soc. 2022, 144, 3106–3116.

[20]

Chen, B.; Zhong, X. W.; Zhou, G. M.; Zhao, N. Q.; Cheng, H. M. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions. Adv. Mater. 2022, 34, 2105812.

[21]

Liang, H. F.; Cao, Z.; Ming, F. W.; Zhang, W. L.; Anjum, D. H.; Cui, Y.; Cavallo, L.; Alshareef, H. N. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 2019, 19, 3199–3206.

[22]

Jin, Y. Q.; Chen, H. Z.; Peng, L. H.; Chen, Z. H.; Cheng, L.; Song, J. D.; Zhang, H.; Chen, J.; Xie, F. Y.; Jin, Y. S. et al. Interfacial polarization triggered by glutamate accelerates dehydration of hydrated zinc ions for zinc-ion batteries. Chem. Eng. J. 2021, 416, 127704.

[23]

Li, S. W.; Liu, Y. C.; Zhao, X. D.; Cui, K. X.; Shen, Q. Y.; Li, P.; Qu, X. H.; Jiao, L. F. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem., Int. Ed. 2021, 60, 20286–20293.

[24]

Liu, H. Y.; Wang, J. G.; Hua, W.; You, Z. Y.; Hou, Z. D.; Yang, J. C.; Wei, C. G.; Kang, F. Y. Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Mater. 2021, 35, 731–738.

[25]

Liu, J. P.; Xu, P. T.; Liang, J. M.; Liu, H. B.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chem. Eng. J. 2020, 389, 124405.

[26]

Liu, W. B.; Hao, J. W.; Xu, C. J.; Mou, J.; Dong, L. B.; Jiang, F. Y.; Kang, Z.; Wu, J. L.; Jiang, B. Z.; Kang, F. Y. Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 2017, 53, 6872–6874.

[27]

Li, P.; Jeong, J. Y.; Jin, B. J.; Zhang, K.; Park, J. H. Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703300.

[28]

Wang, T.; Shen, X. T.; Huang, J. F.; Xi, Q.; Zhao, Y. X.; Guo, Q.; Wang, X.; Xu, Z. W. Tulip-like MoS2 with a single sheet tapered structure anchored on N-doped graphene substrates via C–O–Mo bonds for superior sodium storage. J. Mater. Chem. A 2018, 6, 24433–24440.

[29]

Chen, H.; Song, T. B.; Tang, L. B.; Pu, X. M.; Li, Z.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. In-situ growth of vertically aligned MoS2 nanowalls on reduced graphene oxide enables a large capacity and highly stable anode for sodium ion storage. J. Power Sources 2022, 445, 227271.

[30]

He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

[31]

Huang, Y. X.; Wang, Z. H.; Guan, M. R.; Wu, F.; Chen, R. J. Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Adv. Mater. 2020, 32, 2003534.

[32]

Tian, Z. H.; Chui, N.; Lian, R. Q.; Yang, Q. F.; Wang, W.; Yang, C.; Rao, D. W.; Huang, J. J.; Zhang, Y. W.; Lai, F. L. et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode for high-performance potassium-ion storage. Energy Storage Mater. 2020, 27, 591–598.

[33]

Jiao, T. P.; Yang, Q.; Wu, S. L.; Wang, Z. F.; Chen, D.; Shen, D.; Liu, B.; Cheng, J. Y.; Li, H. F.; Ma, L. T. et al. Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J. Mater. Chem. A 2019, 7, 16330–16338.

[34]

Wang, L. W.; Gao, F.; Wang, A. Z.; Chen, X. Y.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X. et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 2020, 32, 2005423.

[35]

Li, H. F.; Yang, Q.; Mo, F. N.; Liang, G. J.; Liu, Z. X.; Tang, Z. J.; Ma, L. T.; Liu, J.; Shi, Z. C.; Zhi, C. Y. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater. 2019, 19, 94–101.

File
12274_2022_5108_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2022
Revised: 14 September 2022
Accepted: 26 September 2022
Published: 25 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52172217), Natural Science Foundation of Guangdong Province (No. 2021A1515010144), Natural Science Foundation of Shanghai (No. 17ZR1414100), and the Shenzhen Science and Technology Program (No. JCYJ20210324120400002). G. M. Z. appreciates the support from the National Key Research and Development Program of China (No. 2019YFA0705700), Joint Funds of the National Natural Science Foundation of China (No. U21A20174), and the Overseas Research Cooperation Fund of Tsinghua Shenzhen International Graduate School.

Return