Journal Home > Volume 16 , Issue 4

Fluorescent carbon dots (CDs) have been identified as potential nanosensors and attracted tremendous research interests in wide areas including anti-counterfeiting, environmental and biological sensing and imaging in considering of the attractive optical properties. In this work, we present a CDs based fluorescent sensor from polyvinylpyrrolidone, citric acid, and methionine as precursors by hydrothermal approach. The selective quantifying of Fe3+ and ascorbic acid (AA) are based on the fluorescent on–off–on process, in which the fluorescent quenching is induced by the coordination of the Fe3+ on the surface of the CDs, while the fluorescence recovery is mainly attributed to redox reaction between Fe3+ and AA, breaking the coordination and bringing the fluorescence back. Inspired by the good water solubility and biocompatibility, significant photostability, superior photobleaching resistance as well as high selectivity, sensitivity, and interference immunity, which are constructed mainly from the N,S-doping and methionine surface functionalization, the CDs have not only been employed as fluorescence ink in multiple anti-counterfeiting printing and confidential document writing or transmitting, but also been developed as promising fluorescence sensors in solution and solid by CDs doped test strips and hydrogels for effectively monitoring and removing of Fe3+ and AA in environmental aqueous solution. The CDs have been also implemented as effective diagnostic candidates for imaging and tracking of Fe3+ and AA in living cells, accelerating the understanding of their function and importance in related biological processes for the prevention and treatment specific diseases.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multifunctional N,S-doped and methionine functionalized carbon dots for on−off−on Fe3+ and ascorbic acid sensing, cell imaging, and fluorescent ink applying

Show Author's information Zheng Yang1,2,3Tiantian Xu2Shaobing Zhang2Hui Li1,2Yali Ji1Xiaodan Jia2,3Jianli Li1( )
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710012, China

Abstract

Fluorescent carbon dots (CDs) have been identified as potential nanosensors and attracted tremendous research interests in wide areas including anti-counterfeiting, environmental and biological sensing and imaging in considering of the attractive optical properties. In this work, we present a CDs based fluorescent sensor from polyvinylpyrrolidone, citric acid, and methionine as precursors by hydrothermal approach. The selective quantifying of Fe3+ and ascorbic acid (AA) are based on the fluorescent on–off–on process, in which the fluorescent quenching is induced by the coordination of the Fe3+ on the surface of the CDs, while the fluorescence recovery is mainly attributed to redox reaction between Fe3+ and AA, breaking the coordination and bringing the fluorescence back. Inspired by the good water solubility and biocompatibility, significant photostability, superior photobleaching resistance as well as high selectivity, sensitivity, and interference immunity, which are constructed mainly from the N,S-doping and methionine surface functionalization, the CDs have not only been employed as fluorescence ink in multiple anti-counterfeiting printing and confidential document writing or transmitting, but also been developed as promising fluorescence sensors in solution and solid by CDs doped test strips and hydrogels for effectively monitoring and removing of Fe3+ and AA in environmental aqueous solution. The CDs have been also implemented as effective diagnostic candidates for imaging and tracking of Fe3+ and AA in living cells, accelerating the understanding of their function and importance in related biological processes for the prevention and treatment specific diseases.

Keywords: carbon dots, ascorbic acid, fluorescent sensors, Fe3+, fluorescent ink, message encryption

References(68)

[1]

Panwar, N.; Soehartono, A. M.; Chan, K. K.; Zeng, S. W.; Xu, G. X.; Qu, J. L.; Coquet, P.; Yong, K. T.; Chen, X. Y. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem. Rev. 2019, 119, 9559–9656.

[2]

Liu, X. C.; Han, Y. X.; Shu, Y.; Wang, J. H.; Qiu, H. D. Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. J. Hazard. Mater. 2022, 425, 127987.

[3]

Li, X. C.; Zhao, S. J.; Li, B. L.; Yang, K.; Lan, M. H.; Zeng, L. T. Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord. Chem. Rev. 2021, 431, 213686.

[4]

Algar, W. R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K. D.; Darwish, G. H.; Peveler, W. J.; Xiao, Z. J.; Tsai, H. Y.; Gupta, R. et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021, 121, 9243–9358.

[5]

He, D. M.; Yan, M. M.; Sun, P. J.; Qu, L. B.; Li, Z. H. Recent progress in carbon-dots-based nanozymes for chemosensing and biomedical applications. Chin. Chem. Lett. 2021, 32, 2994–3006.

[6]

Fu, Y. X.; Han, H. H.; Zhang, J. L.; He, X. P.; Feringa, B. L.; Tian, H. Photocontrolled fluorescence “double-check” bioimaging enabled by a glycoprobe-protein hybrid. J. Am. Chem. Soc. 2018, 140, 8671–8674.

[7]

Cheng, D.; Peng, J. J.; Lv, Y.; Su, D. D.; Liu, D. J.; Chen, M.; Yuan, L.; Zhang, X. B. De novo design of chemical stability near-infrared molecular probes for high-fidelity hepatotoxicity evaluation in vivo. J. Am. Chem. Soc. 2019, 141, 6352–6361.

[8]

Xing, L. F.; Wang, B.; Li, J.; Guo, X. J.; Lu, X. C.; Chen, X. H.; Sun, H. T.; Sun, Z. R.; Luo, X.; Qi, S. H. et al. A fluorogenic ONOO-triggered carbon monoxide donor for mitigating brain ischemic damage. J. Am. Chem. Soc. 2022, 144, 2114–2119.

[9]

Kumagai, K.; Uematsu, T.; Torimoto, T.; Kuwabata, S. Photoluminescence enhancement by light harvesting of metal-organic frameworks surrounding semiconductor quantum dots. Chem. Mater. 2021, 33, 1607–1617.

[10]

Hao, J. Q.; Tai, G. A.; Zhou, J. X.; Wang, R.; Hou, C.; Guo, W. L. Crystalline semiconductor boron quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 17669–17675.

[11]

Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem., Int. Ed. 2013, 52, 3086–3109.

[12]

Han, Y. P.; Li, X. M.; Chen, H. B.; Hu, X. J.; Luo, Y.; Wang, T.; Wang, Z. J.; Li, Q.; Fan, C. H.; Shi, J. Y. et al. Real-time imaging of endocytosis and intracellular trafficking of semiconducting polymer dots. ACS Appl. Mater. Interfaces 2017, 9, 21200–21208.

[13]

Wang, B. Y.; Cai, H. J.; Waterhouse, G. I. N.; Qu, X. L.; Yang, B.; Lu, S Y. Carbon dots in bioimaging, biosensing and therapeutics: A comprehensive review. Small Sci. 2022, 2, 2200012.

[14]

Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

[15]

Li, S.; Wang, H. M.; Lu, H. J.; Liang, X. P.; Wang, H. M.; Zhang, M. C.; Xia, K. L.; Yin, Z.; Zhang, Y.; Zhang, X. C. et al. Sustainable silk-derived multimode carbon dots. Small 2021, 17, 2103623.

[16]

Liu, Y. Y.; Yu, N. Y.; Fang, W. D.; Tan, Q. G.; Ji, R.; Yang, L. Y.; Wei, S.; Zhang, X. W.; Miao, A. J. Photodegradation of carbon dots cause cytotoxicity. Nat. Commun. 2021, 12, 812.

[17]

Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

[18]

Chen, X. K.; Zhang, X. D.; Wu, F. G. Ultrasmall green-emitting carbon nanodots with 80% photoluminescence quantum yield for lysosome imaging. Chin. Chem. Lett. 2021, 32, 3048–3052.

[19]

Du, J. J.; Xu, N.; Fan, J. L.; Sun, W.; Peng, X. J. Carbon dots for in vivo bioimaging and theranostics. Small 2019, 15, 1805087.

[20]

Lin, Q. S.; Li, Z. H.; Yuan, Q. Recent advances in autofluorescence-free biosensing and bioimaging based on persistent luminescence nanoparticles. Chin. Chem. Lett. 2019, 30, 1547–1556.

[21]

Yao, B. W.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon dots: A small conundrum. Trends Chem. 2019, 1, 235–246.

[22]

Li, X. C.; Xing, X. J.; Zhao, S. J.; Zhu, S. H.; Wang, B. H.; Lan, M. H.; Song, X. Z. Carbon dot-based fluorescent and colorimetric sensor for sensitive and selective visual detection of benzoyl peroxide. Chin. Chem. Lett. 2022, 33, 1632–1636.

[23]

Huo, F.; Li, W. Q.; Liu, Y. H.; Liu, X. H.; Lee, C. Y.; Zhang, W. Review of long wavelength luminescent carbon-based nanomaterials: Preparation, biomedical application and future challenges. J. Mater. Sci. 2021, 56, 2814–2837.

[24]

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

[25]

Huo, Z. P.; Xu, W. Q.; Chen, G.; Wang, Z. Z.; Xu, S. P Surface-state triggered solvatochromism of carbonized polymer dot and its two-photon luminescence. Nano Res. 2022, 15, 2567–2575.

[26]

Hu, R. B.; Liao, T.; Ren, Y.; Liu, W. M.; Ma, R.; Wang, X. Y.; Lin, Q. H.; Wang, G. X.; Liang, Y. Y. Sensitively detecting antigen of SARS-CoV-2 by NIR-II fluorescent nanoparticles. Nano Res. 2022, 15, 7313–7319.

[27]

Xiao, Y.; Yin, X. H.; Sun, P. J.; Sun, Y. Q.; Qu, L. B.; Li, Z. H. Dual microenvironmental parameter-responsive lysosome-targeting carbon dots for the high contrast discrimination of a broad spectrum of cancer cells. Chin. Chem. Lett. 2022, 33, 5051–5055.

[28]

Yang, S. H.; Sun, X. H.; Wang, Z. Y.; Wang, X. Y.; Guo, G. S.; Pu, Q. S. Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Res. 2018, 11, 1369–1378.

[29]

Dang, V. D.; Ganganboina, A. B.; Doong, R. A. Bipyridine- and copper-functionalized n-doped carbon dots for fluorescence turn off-on detection of ciprofloxacin. ACS Appl. Mater. Interfaces 2020, 12, 32247–32258.

[30]

Zhang, X. Y.; Li, Y.; Wang, Y. Y.; Liu, X. Y.; Jiang, F. L.; Liu, Y.; Jiang, P. Nitrogen and sulfur co-doped carbon dots with bright fluorescence for intracellular detection of iron ion and thiol. J. Colloid Interface Sci. 2022, 611, 255–264.

[31]

Song, S. M.; Hu, J. H.; Li, M. L.; Gong, X. J.; Dong, C.; Shuang, S. M. Fe3+ and intracellular pH determination based on orange fluorescence carbon dots co-doped with boron, nitrogen and sulfur. Mater. Sci. Eng. C 2021, 118, 111478.

[32]

Lan, M. H.; Zhao, S. J.; Zhang, Z. Y.; Yan, L.; Guo, L.; Niu, G. L.; Zhang, J. F.; Zhao, J. F.; Zhang, H. Y.; Wang, P. F. et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 2017, 10, 3113–3123.

[33]

Su, Y.; Xie, Z. G.; Zheng, M. Carbon dots with concentration-modulated fluorescence: Aggregation-induced multicolor emission. J. Colloid Interface Sci. 2020, 573, 241–249.

[34]

Qian, J. J.; Cao, N. N.; Zhang, J.; Hou, J. J.; Chen, Q.; Zhang, C.; Sun, Y. D.; Liu, S. J.; He, L. F.; Zhang, K. et al. Field-portable ratiometric fluorescence imaging of dual-color label-free carbon dots for uranyl ions detection with cellphone-based optical platform. Chin. Chem. Lett. 2020, 31, 2925–2928.

[35]

Sar, D.; Ostadhossein, F.; Moitra, P.; Alafeef, M.; Pan, D. J. Small molecule NIR-II dyes for switchable photoluminescence via host–guest complexation and supramolecular assembly with carbon dots. Adv. Sci. 2022, 9, 2202414.

[36]

Wang, C.; Hu, T. T.; Wen, Z. Q.; Zhou, J. D.; Wang, X. J.; Wu, Q.; Wang, C. X. Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. J. Colloid Interface Sci. 2018, 521, 33–41.

[37]

Jacinth Gracia, K. D.; Thavamani, S. S.; Amaladhas, T. P.; Devanesan, S.; Ahmed, M.; Kannan, M. M. Valorisation of bio-derived fluorescent carbon dots for metal sensing, DNA binding and bioimaging. Chemosphere 2022, 298, 134128.

[38]

Li, F.; Li, T. Y.; Sun, C. X.; Xia, J. H.; Jiao, Y.; Xu, H. P. Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem., Int. Ed. 2017, 56, 9910–9914.

[39]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[40]

Zheng, X. F.; Lian, Q.; Zhou, L. Y.; Jiang, Y. J.; Gao, J. Peroxidase mimicking of binary polyacrylonitrile-CuO nanoflowers and the application in colorimetric detection of H2O2 and ascorbic acid. ACS Sustainable Chem. Eng. 2021, 9, 7030–7043.

[41]

Bai, Y.; Wang, Y.; Cao, L. P.; Jiang, Y. J.; Li, Y. F.; Zou, H. Y.; Zhan, L.; Huang, C. Z. Self-targeting carbon quantum dots for peroxynitrite detection and imaging in live cells. Anal. Chem. 2021, 93, 16466–16473.

[42]

Li, J.; Hu, Z. E.; We, Y. J.; Liu, Y. H.; Wang, N.; Yu, X. Q. Multifunctional carbon quantum dots as a theranostic nanomedicine for fluorescence imaging-guided glutathione depletion to improve chemodynamic therapy. J. Colloid Interface Sci. 2022, 606, 1219–1228.

[43]

Zhang, J. J.; Chai, X. Z.; He, X. P.; Kim, H. J.; Yoon, J.; Tian, H. Fluorogenic probes for disease-relevant enzymes. Chem. Soc. Rev. 2019, 48, 683–722.

[44]

Yuan, M.; Wu, Y.; Zhao, C. Y.; Chen, Z. X.; Su, L. C.; Yang, H. B.; Song, J. B. Activated molecular probes for enzyme recognition and detection. Theranostics 2022, 12, 1459–1485.

[45]

Mohammadi, S.; Salimi, A.; Hoseinkhani, Z.; Ghasemi, F.; Mansouri, K. Carbon dots hybrid for dual fluorescent detection of microRNA-21 integrated bioimaging of MCF-7 using a microfluidic platform. J. Nanobiotechnol. 2022, 20, 73.

[46]

Nawaz, H.; Chen, S.; Li, X.; Zhang, X.; Zhang, X. M.; Wang, J. Q.; Xu, F. Cellulose-based environment-friendly smart materials for colorimetric and fluorescent detection of Cu2+/Fe3+ ions and their anti-counterfeiting applications. Chem. Eng. J. 2022, 438, 135595.

[47]

Shu, W. T.; Baumann, B. H.; Song, Y.; Liu, Y. R.; Wu, X. W.; Dunaief, J. L. Ferrous but not ferric iron sulfate kills photoreceptors and induces photoreceptor-dependent RPE autofluorescence. Redox Biol. 2020, 34, 101469.

[48]

Yang, B. W.; Yao, H. L.; Tian, H.; Yu, Z. G.; Guo, Y. D.; Wang, Y. M.; Yang, J. C.; Chen, C.; Shi, J. L. Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination. Nat. Commun. 2021, 12, 3393.

[49]

Xu, O. W.; Wan, S. Y.; Zhang, Y. H.; Li, J. W.; Zhu, X. S. A unique dual-excitation carbon quantum dots: Facile synthesis and application as a dual-“on–off–on” fluorescent probe. Sens. Actuators B Chem. 2021, 340, 129904.

[50]

Crivelli, J. J.; Mitchell, T.; Knight, J.; Wood, K. D.; Assimos, D. G.; Holmes, R. P.; Fargue, S. Contribution of dietary oxalate and oxalate precursors to urinary oxalate excretion. Nutrients 2021, 13, 62.

[51]

Ngo, B.; van Riper, J. M.; Cantley, L. C.; Yun, J. Y. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 2019, 19, 271–282.

[52]

Nandi, N.; Sarkar, P.; Sahu, K. N-Doped carbon dots for visual recognition of 4-nitroaniline and use in fluorescent inks. ACS Appl. Nano Mater. 2021, 4, 9616–9624.

[53]

Guo, J. Z.; Li, H.; Ling, L. T.; Li, G.; Cheng, R.; Lu, X.; Xie, A. Q.; Li, Q.; Wang, C. F.; Chen, S. Green synthesis of carbon dots toward anti-counterfeiting. ACS Sustainable Chem. Eng. 2019, 8, 1566–1572.

[54]

Thirumalaivasan, N.; Wu, S. P. Bright luminescent carbon dots for multifunctional selective sensing and imaging applications in living cells. ACS Appl. Bio Mater. 2020, 3, 6439–6446.

[55]

Zhang, C.; Li, X. C.; Li, T. T.; Liu, M. L.; Zhang, K.; Zheng, Y.; Lan, M. H.; Zhang, J.; Zhang, Z. P. Design and synthesis of nanosensor based on unsaturated double bond functional carbon dots for phenylephrine detection using bromine as a bridge. Anal. Chem. 2021, 93, 5145–5150.

[56]

Wu, H. F.; Tong, C. L. Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury(II) in environmental water samples based on the Tb3+-modified carbon quantum dot/3-aminophenylboronic acid hybrid. Anal. Chem. 2020, 92, 8859–8866.

[57]

Li, L.; Shi, L. H.; Jia, J.; Eltayeb, O.; Lu, W. J.; Tang, Y. H.; Dong, C.; Shuang, S. M. Dual photoluminescence emission carbon dots for ratiometric fluorescent GSH sensing and cancer cell recognition. ACS Appl. Mater. Interfaces 2020, 12, 18250–18257.

[58]

Yang, X. C.; Li, Q. L.; Tang, M.; Yang, Y. L.; Yang, W.; Hu, J. F.; Pu, X. L.; Liu, J. L.; Zhao, J. T.; Zhang, Z. J. One stone, two birds: pH- and temperature-sensitive nitrogen-doped carbon dots for multiple anticounterfeiting and multiple cell imaging. ACS Appl. Mater. Interfaces 2020, 12, 20849–20858.

[59]

Liu, X. R.; Zhang, S. X.; Xu, H.; Wang, R. R.; Dong, L. N.; Gao, S. M.; Tang, B. Y.; Fang, W. N.; Hou, F. J.; Zhong, L. L. et al. Nitrogen-doped carbon quantum dots from poly(ethyleneimine) for optical dual-mode determination of Cu2+ and L-cysteine and their logic gate operation. ACS Appl. Mater. Interfaces 2020, 12, 47245–47255.

[60]

Yang, J.; Jin, X. L.; Cheng, Z.; Zhou, H. W.; Gao, L. N.; Jiang, D. L.; Jie, X. L.; Ma, Y. T.; Chen, W. X. Facile and green synthesis of bifunctional carbon dots for detection of Cu2+ and ClO in aqueous solution. ACS Sustainable Chem. Eng. 2021, 9, 13206–13214.

[61]

Nandi, N.; Gaurav, S.; Sarkar, P.; Kumar, S.; Sahu, K. Multifunctional N-doped carbon dots for bimodal detection of bilirubin and vitamin B12, living cell imaging, and fluorescent ink. ACS Appl. Bio Mater. 2021, 4, 5201–5211.

[62]

Lv, X. M.; Man, H. S.; Dong, L. J.; Huang, J. Y.; Wang, X. Y. Preparation of highly crystalline nitrogen-doped carbon dots and their application in sequential fluorescent detection of Fe3+ and ascorbic acid. Food Chem. 2020, 326, 126935.

[63]

Chen, T. X.; Yao, T. T.; Pan, H.; Whittaker, A. K.; Li, Y.; Zhu, S. M.; Wang, Z. Y. One-step nanoarchitectonics of a multiple functional hydrogel based on cellulose nanocrystals for effective tumor therapy. Nano Res. 2022, 15, 8636–8647.

[64]

Shan, F. S.; Fu, L. J.; Chen, X. Y.; Xie, X. Y.; Liao, C. S.; Zhu, Y. X.; Xia, H. Y.; Zhang, J.; Yan, L.; Wang, Z. Y. et al. Waste-to-wealth: Functional biomass carbon dots based on bee pollen waste and application. Chin. Chem. Lett. 2022, 33, 2942–2948.

[65]

E, S.; He, C.; Wang, J. H.; Mao, Q. X.; Chen, X. W. Tunable organelle imaging by rational design of carbon dots and utilization of uptake pathways. ACS Nano 2021, 15, 14465–14474.

[66]

Guo, J. Z.; Lu, Y. S.; Xie, A. Q.; Li, G.; Liang, Z. B.; Wang, C. F.; Yang, X. N.; Chen, S. Yellow-emissive carbon dots with high solid-state photoluminescence. Adv. Funct. Mater. 2022, 32, 2110393.

[67]

Xu, Y. L.; Wang, C.; Jiang, T.; Ran, G. X.; Song, Q. J. Cadmium induced aggregation of orange-red emissive carbon dots with enhanced fluorescence for intracellular imaging. J. Hazard. Mater. 2022, 427, 128092.

[68]

Li, X. J.; Zheng, M. D.; Wang, H. J.; Meng, Y.; Wang, D.; Liu, L. L.; Zeng, Q. H.; Xu, X. W.; Zhou, D.; Sun, H. C. Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping. J. Colloid Interface Sci. 2022, 609, 54–64.

File
12274_2022_5107_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2022
Revised: 19 September 2022
Accepted: 26 September 2022
Published: 09 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 22171223, 22179107, 22077099, and 21807087), the Technology Innovation Leading Program of Shaanxi (No. 2020TG−031), the Shaanxi Provincial Natural Science Fund Project (No. 2018JQ2061), the Xi’an City Science and Technology Project (Nos. 2020KJRC011 and 2019218214GXRC018CG019−GXYD18.4), and the Outstanding Youth Science Fund of Xi’an University of Science and Technology (No. 2018YQ3–14).

Return